• Title/Summary/Keyword: Fire facilities

Search Result 835, Processing Time 0.031 seconds

Experimental Study for Earthquake and Subsidence-resistant Performance Evaluation of iPVC Buried Water Pipe (iPVC 매립 상수도관의 내진 성능 및 내침하 성능 평가를 위한 시험적 연구)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Jae-Bong;Ju, Bu-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • Water pipes are important facilities and consist of pipes of various specifications and materials. The annual average number of earthquakes in Korea is steadily increasing. Therefore, in case of the water pipe, it is estimated necessary to prepare for earthquakes. Damages to the water pipe by the earthquake can cause problems such as water supply and fire suppression, and cause damage to life and property. In Korea, however, it is difficult to find examples of seismic performance evaluation of water pipes based on experimental study. Damage to the water pipes by the earthquake is caused by the displacement-controlled behavior of the ground which is the liquifaction and fault lines. Especially, The damage to the water pipes by the earthquake is concentrated on the joint of the pipe. In particular, piping less than 200mm in diameter was found to be dangerous. Thus, in this study, the seismic and settlement performance of iPVC buried water pipes with fixed joints with a clamp of 150mm was evaluated with a test approach.

An Experimental Study on the Characteristics of Sodium Fires (나트륨 화재 특성의 실험적 연구)

  • Bae, Jae-Heum;Ahn, Do-Hee;Kim, Young-Cheol;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.471-483
    • /
    • 1994
  • A sodium fire facility with a test chamber of 1.7㎥ volume was constructed and operated to carry out experiments of sodium fires such as pool, spray, and columnar fires which might take place in sodium-related facilities. The experimental results of pool fires showed that the increase of temperature and pressure in the test chamber was much smaller than that of spray and columnar fires even though their amount of sodium injection in the chamber was much larger compared to other types of fires. And it was found in pool fires that the temperatures of sodium pool and the gas temperature in the test chamber had been maintained much longer than other types of fires, and that the chamber pressure had come to vacuum due to depletion of the oxygen for a large amount of sodium injection in the chamber. The experimental results of spray fires showed that sprayed sodium of small particles instantly reacted with oxygen, and that its reaction heat increased gas temperature and pressure of the test chamber rapidly and decreased them shortly. And the maximum gas temperature and pressure of the test chamber in spray fires ore greatly changed according to the inlet sodium temperature in the test chamber. The characteristics of the columnar fires were almost similar to those of spray fires, but the maximum temperature and pressure of the test chamber were much smaller even for a large amount of sodium injection. And it was shown in spray and columnar fires that the temperatures at each measurement position in the test chamber were quite different due to the instantaneous sodium oxidation in comparision with pool fires. Finally, the graphex powder was proved to be a very effective extinguisher against sodium pool fires.

  • PDF

Design of detection method for smoking based on Deep Neural Network (딥뉴럴네트워크 기반의 흡연 탐지기법 설계)

  • Lee, Sanghyun;Yoon, Hyunsoo;Kwon, Hyun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.191-200
    • /
    • 2021
  • Artificial intelligence technology is developing in an environment where a lot of data is produced due to the development of computing technology, a cloud environment that can store data, and the spread of personal mobile phones. Among these artificial intelligence technologies, the deep neural network provides excellent performance in image recognition and image classification. There have been many studies on image detection for forest fires and fire prevention using such a deep neural network, but studies on detection of cigarette smoking were insufficient. Meanwhile, military units are establishing surveillance systems for various facilities through CCTV, and it is necessary to detect smoking near ammunition stores or non-smoking areas to prevent fires and explosions. In this paper, by reflecting experimentally optimized numerical values such as activation function and learning rate, we did the detection of smoking pictures and non-smoking pictures in two cases. As experimental data, data was constructed by crawling using pictures of smoking and non-smoking published on the Internet, and a machine learning library was used. As a result of the experiment, when the learning rate is 0.004 and the optimization algorithm Adam is used, it can be seen that the accuracy of 93% and F1-score of 94% are obtained.

Illuminance Effects Affecting to Cognitive Ability of the Elderly (고령자의 인지력에 미치는 조도의 영향)

  • Kim, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.507-512
    • /
    • 2019
  • To study how illuminance affects cognitive ability of the elderly, the elderly's EEG, concentration, HRV and vibra image were measured in a test room with temperature $25[^{\circ}C]$, relative humidity 50[RH%] and air flow speed 0.02[m/sec] by varying illuminance to 100[lux], 300[lux], 600[lux], 1000[lux] and 1500[lux]. Ten active elderly males were selected as subjects. Experiment condition was fixed as 1met of activity amount where the subject is seated and relaxed with cloth amount of 0.7clo. As a result, 1000[lux] was found out to be the most pleasant illuminance for the elderly, because $M{\beta}$ increased by 66.35%, and $S{\alpha}$ increased by 31.57% when the elderly was under 1000[lux] of illuminance. Also, concentration under 1000[lux] increased by 8.83% compared to 100[lux], and the pattern of concentration maintained uniformly. SDNN increased by 74.94% under 1000[lux] compared to 100[lux]. Nervousness decreased by 97.23% under 1000[lux] compared to 100[lux]. Moreover, HRT notably increased and aggression remarkably decreased under illuminance of 1000[lux]. Thus, based on the fact that comfort, concentration and heart stability of the elderly reach the highest under 1000[lux], it is determined that the illuminance has to be considered foremost in designing the elderly's welfare facilities to raise their safety and level of independence.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

Risk Assessment of Stationary Hydrogen Refueling Station by Section in Dispenser Module (고정식 수소충전소에서의 Dispenser Module 내 구역별 위험성 평가)

  • SangJin Lim;MinGi Kim;Su Kim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.76-85
    • /
    • 2023
  • Demand for hydrogen as a renewable energy resource is increasing. However, unlike conventional fossil fuels, hydrogen requires a dedicated refueling station for fuel supply. A risk assessment of hydrogen refueling stations must be undertaken to secure the infrastructure. Therefore, in this study, a risk assessment for hydrogen refueling stations was conducted through both qualitative and quantitative risk assessments. For the qualitative evaluation, the hydrogen dispenser module was evaluated as two nodes using the hazard and operability (HAZOP) analysis. The risk due to filter clogging and high-pressure accidents was evaluated to be high according to the criticality estimation matrix. For the quantitative risk assessment, the Hydrogen Korea Risk Assessment Module (Hy-KoRAM) was used to indicate the shape of the fire and the range of damage impact, and to evaluate the individual and social risks. The individual risk level was determined of to be as low as reasonably practicable (ALARP). Additional safety measures proposed include placing the hydrogen refueling station about 100m away from public facilities. The social risk level was derived as 1E-04/year, with a frequency of approximately 10 deaths, falling within the ALARP range. As a result of the qualitative and quantitative risk assessments, additional safety measures for the process and a safety improvement plan are proposed through the establishment of a restricted area near the hydrogen refueling station.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

Proposal for Ignition Source and Flammable Material Safety Management through 3D Modeling of Hazardous Area: Focus on Indoor Mixing Processes (폭발위험장소 구분도의 3D Modeling을 통한 점화원 및 가연물 안전관리 방안 제안: 실내 혼합공정을 중심으로)

  • Hak-Jae Kim;Duk-Han Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • Purpose: This study aims to propose measures for the prevention of fire and explosion accidents within manufacturing facilities by improving the existing classification criteria for hazardous locations based on the leakage patterns of flammable liquids. The objective is to suggest ways to safely manage ignition sources and combustible materials. Method: The hazardous locations were calculated using "KS C IEC 60079-10-1," and the calculated explosion hazard distances were visualized in 3D. Additionally, the formula for the atmospheric dispersion of flammable vapors, as outlined in "P-91-2023," was utilized to calculate the dispersion rates within the hazardous locations represented in 3D. Result: Visualization of hazardous locations in 3D enabled the identification of blind spots in the floor plan, facilitating immediate recognition of ignition sources within these areas. Furthermore, when calculating the time taken for the Lower Explosive Limit (LEL) to reach within the volumetric space of the hazardous locations represented in 3D, it was found that the risk level did not correspond identically with the explosion hazard distances. Conclusion: Considering the atmospheric dispersion of flammable liquids, it was concluded that safety management should be conducted. Therefore, a method for calculating the concentration values requiring detection and alert based on realistically achievable ventilation rates within the facility is proposed.

A Study on the Locational and Spatial Characteristics of Lotus Ponds of Fortress Wall of Seoul(漢陽都城) during the Joseon Dynasty (조선시대 한양도성 연지(蓮池)의 입지 및 공간적 특성 고찰)

  • Gil, Ji-Hye;Son, Yong-Hoon;Hwang, Kee-Won
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.4
    • /
    • pp.38-51
    • /
    • 2015
  • In the maps of the period, there were three large ponds called Dongji(東池), Seoji(西池) and Namji(南池) in Hanyang, the capital of Joseon Dynasty. They were different than the ponds found in the palace, civic buildings, and private dwellings. Dongji, Seoji and Namji were ponds relating to Fortress wall of Seoul, and all had lotuses cultivated in them. The purpose of this paper is to clarify the locational and spatial characteristics of these ponds and to detail the construction and reconstruction process and management conditions through maps, drawings, illustrations, historical records and literary works from the urban environmental perspective. The results are as follows. First, Seoji and Namji were intended for Bibo(裨補) which redeemed the geographical weaknesses of Hanyang, securement of bright court water(明堂水), supplement for fire energy(火氣), fire preventive water and waterscape facilities, while Dongji was emphasized on protecting water mouth(水口) besides Bibo and securement of bright court water. Second, Seoji was connected to mountain streams and Dongji and Namji were to ditches. The ponds connected to ditches had been difficult to fill and maintain. Third, Seoji and Namji were in urban areas, whereas Dongji was in farmlands, and these locational differences had an influence on the use of ponds. Fourth, the shapes of ponds, in contrast to the ponds in palace and civic buildings, which were perfectly square, were either freeform or square with rounded edges. Fifth, lotus ponds could be maintained by continuous management polices, earth filling and reconstructing process were repeated during the Joseon Dynasty. The lotus ponds of Fortress Wall of Seoul which had managed over 500 years, were built in, in accordance with the tenets of Bibo pungsu geomancy; however as time passed, they were maintained not only as public open spaces, but also a cultural attraction for residents and visitors.