• Title/Summary/Keyword: Fire explosion

Search Result 637, Processing Time 0.025 seconds

Numerical study of progressive collapse in reinforced concrete frames with FRP under column removal

  • Esfandiari, J.;Latifi, M.K.
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.165-172
    • /
    • 2019
  • Progressive collapse is one of the factors which if not predicted at the time of structure plan; its occurrence will lead to catastrophic damages. Through having a glance over important structures chronicles in the world, we will notice that the reason of their collapse is a minor damage in structure caused by an accident like a terrorist attack, smashing a vehicle, fire, gas explosion, construction flaws and its expanding. Progressive collapse includes expanding rudimentary rupture from one part to another which leads to total collapse of a structure or a major part it. This study examines the progressive collapse of a 5-story concrete building with three column eliminating scenarios, including the removal of the corner, side and middle columns with the ABAQUS software. Then the beams and the bottom of the concrete slab were reinforced by (reinforcement of carbon fiber reinforced polymer) FRP and then the structure was re-analyzed. The results of the analysis show that the reinforcement of carbon fiber reinforced polymer sheets is one of the effective ways to rehabilitate and reduce the progressive collapse in concrete structures.

Design of Over Current Sequence Control Algorithm According to Lithium Battery Fuse Temperature Compensation (리튬 배터리 퓨즈 온도 보상에 따른 과전류 시퀀스 제어 알고리즘 설계)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • Lithium-ion batteries used for IT, automobiles, and industrial energy-storage devices have battery management systems (BMS) to protect the battery from abnormal voltage, current, and temperature environments, as well as safety devices like, current interruption device (CID), fuse, and vent to obtain positive temperature coefficient (PTC). Nonetheless, there are harmful to human health and property and damage the brand image of the manufacturer because of smoke, fire, and explosion of lithium battery packs. In this paper, we propose a systematic protection algorithm combining battery temperature, over-current, and interconnection between protection elements to prevent copper deposition, internal short circuit, and separator shrinkage due to frequent and instantaneous over-current discharges. The parameters of the proposed algorithm are suggested to utilize the experimental data in consideration of battery pack operating conditions and malicious conditions.

Vehicle Body Design of Armored Robot for Complex Disaster (복합 재난을 위한 장갑형 로봇의 차체 설계)

  • Park, Sang Hyun;Jin, Maolin;Kim, Young-Ryul;Kim, Doik;Kim, Jun-Sik;Shin, Dong Bin;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • In this paper, a design for a vehicle body of an armored robot for complex disasters is described. The proposed design considers various requirements in complex disaster situations. Fire, explosion, and poisonous gas may occur simultaneously under those sites. Therefore, the armored robot needs a vehicle body that can protect people from falling objects, high temperature, and poisonous gas. In addition, it should provide intuitive control devices and realistic surrounding views to help the operator respond to emergent situations. To fulfill these requirements of the vehicle body, firstly, the frame was designed to withstand the impact of falling objects. Secondly, the positive pressure device and the cooling device were applied. Thirdly, a panoramic view was implemented that enables real-time observation of surroundings through a number of image sensors. Finally, the cockpit in the vehicle body was designed focused on the manipulability of the armored robot in disaster sites.

A study of thermolysis of irradiated diamide-containing extraction systems with nitric acid

  • Srvortsov, I.V.;Belova, E.V.;Sokolov, I.P.;Rodin, A.V.;Stefanovsky, S.V.;Mysoedov, B.F.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1421-1425
    • /
    • 2018
  • The dynamics of gas release at thermal oxidation of extraction systems on the basis of diamides of dicarbonic acids in fluorinated sulphones with 14 mol/L $HNO_3$ was investigated. The effect of preirradiation of the mixtures with accelerated electrons on the kinetics of their thermolysis was determined. The mixtures were heated in an autoclave at temperatures of 170 and $200^{\circ}C$ and irradiated using an electron accelerator to absorbed doses of 0.1, 0.5, and 1.0 MGy. It has been shown that no conditions for autocatalytic oxidation at thermolysis of extraction mixtures irradiated up to a dose of 1 MGy were developed.

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features (복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여)

  • HEEKYUNG PARK;MINCHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

A Study on the Prevention of Electrostatic Fire Explosion (정전기 화재폭발 예방에 관한 연구)

  • Ham, Eun-Gu;Heo, Dai-Seong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.385-386
    • /
    • 2022
  • 본 연구는 방폭지역에서 정전기를 측정하는 설비 (EST:Electrostatic Transmitter), 측정 된 정전기를 저감시키는 설비(EES:Electrostatic Elimination System), 방폭지역에서 인체 정전기를 제거시키는 설비(방폭 디지털 제전봉)를 통한 비방폭구역에서 사용되는 정전기 측정장비와의 비교를 통하여 극히 제한적인 Basic Design(온도/압력/속 도/유량)으로 인한 설계나 장치 등 변경 등을 반영하여 방폭지역에대한 근본적인 문제점을 도출 제거할수 있는 방안을 마련했으며 기존 사용되었던 비방폭지역의 정전기 제거 시스템을 보완한 방폭지역의 정전기 화재폭발 예방 기술을 적용하였다.

  • PDF

A Study for Examples of Fire including with Combustible Substance and electrical overload in Automotive Inside Room (자동차 실내 인화성물질과 전기과부하에 의한 화재관련 사례 연구)

  • Han, Jae Oh;Ham, Sung Hoon;Lim, Ha Young;Lee, Il Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2014
  • This paper is to analyze and study the failure examples of fire by inflammables and electric contact faulty in interior of vehicle. The first example, the driver used to air freshener that remove the air conditioner bad smell. He get out of a car. And then, he put it on the crash pad. Before long, a fire breaks out because of explosion solar radiation. The second example, the driver used in room of a car. It certified the fire by disconnection phenomenon happened the electric overload. The third example, the driver install the heat rays to warm his body, In the initial stages, it didn't seek the dangerous of fire during using a car to 5,000km. This heat rays become to down durability so that produced the electric overload in an instant. The fourth example, after the man smoked the cigarette on riding with rear seat, he put it on seat in vehicle no extinguishing the burning cigarette. It knew the fact that burnt to ashes a car by on well combustible paper. Thus, the driver must consider a countermeasure for minimize the fire production when he use the inflammable and install adding electric system.

A Study of the Improvement Plan and Real Condition Estimation of Fire Protection Safety Management for Power Plants in Korea (국내발전소 소방안전관리 운영실태조사 및 개선방안에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • The Fukushima Nuclear Disaster in 2011 and California Power Failure in 2001 are examples of the importance of the power plant safety management that caused huge national loss with a power-related mass casualty incident. In a situation where humans cannot live without electricity, efforts to strengthen the systematic firefighting safety management in power plants that produce electricity with large amounts of hazardous materials as fuel, such as nuclear energy, coal and gas, are essential to protect life and prevent property loss and stable economic growth from fire explosion accident or radiation leak due to the negligence of safety management and natural disasters such as earthquakes, which has recently become an issue. This study examined the operating situation of firefighting safety management in power plants with firefighting officials employed by five power generation companies including Korea Southern Power Co., Ltd. and Korea Hydro & Nuclear Power Co. Ltd., which are in charge of the domestic power supply. As a result, for the systematic firefighting safety management of power plants, improvement plans were drawn, including the development of an effective business manual and a comprehensive management system, the substantiality of firefighting safety education, and the strengthening of seismic designs to prepare for earthquakes.

Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석)

  • Jung, Ho Jin;Yoon, Ik Keun;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than $10^{-4}/yr$. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF