• Title/Summary/Keyword: Fire curves

Search Result 74, Processing Time 0.023 seconds

A study on the deterministic temperature-time curves and required resistance times by fire model for assessment of fire resistance of tunnel structures (터널의 내화성능 평가용 화재온도곡선과 화재모델별 내화시간에 대한 고찰)

  • Kim, Hyo-Gyu;Park, Kyung-Whan;Yoon, Myong-O;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.165-176
    • /
    • 2005
  • A variety of research projects have been undertaken due to the recent catastrophic tunnel fires throughout the world, Among them, more emphasis was given to full scale and scale model fire experiments, and recently the area of fire resistance of tunnel structures attract more interests, On the contrary to the cases in most of the advanced countries where design standards as well as recommendations have already been announced, no local criteria for design can be found, This paper aims at deriving the fire characteristics appropriate for the assessment criteria of fire resistance of structures in local tunnels through studying the existing fire temperature curves including ISO 834 standard temperature curve, HC curve, RWS curve, ZTV curve and EBA curve.

  • PDF

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

Study of Standard Design Fire Curve of Various Railcar (철도차량별 표준 설계화재곡선 연구)

  • Lee, Duck-Hee;Park, Won-Hee;Jung, Woo-Sung;Kim, Chi-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1426-1431
    • /
    • 2011
  • A study on the standardization of design fire HRR(heat release rate) curve was conducted for various railcar from the fire simulation or the fire tests. These standard curves are listed on the tunnel fire safety manual which will be used for the QRA(quantitative risk analysis) process of the long railway tunnels. The design fire curve is based with four simple factor representing the key of fire curve characteristics. Flashover time, maximum HRR and burn out time are the key factors of the design fire curve. Specially total heat release is decided by the burnable material amount in the car.

  • PDF

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Evaluation of Residual Strength of Fire-Damaged RC Beams with Normal and High Strength (화재 피해를 입은 일반강도 및 고강도 RC 휨 부재의 잔존강도 평가)

  • Choi Eungyu;Kang Ji Yeon;Shin Mi Kyoung;Shin Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.51-54
    • /
    • 2005
  • Reinforced Concrete structures have been commonly regarded as fire-resisting constructions. In the case of high-strength concrete, however, the behavior of a concrete member under fire and after fire has characteristics in different way with normal strength concrete members because of spalling. The resonable evaluation about the residual strength and stiffness of members as well as material properties has to be conducted before reusing the fire-damaged structures or retrofitting or strengthening them. Therefore, the guideline is needed for evaluation the residual strength and stiffness. In this study, the fire test is conducted with parameters like concrete strength, fire time and cover thickness, etc. The loads-deflection curves are used for comparison and analysis with the parameters.

  • PDF

Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST (FDS와 CFAST를 이용한 액체 풀화재의 수정된 디자인 화재곡선 평가 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the previous design fire curve for fire simulation was modified and re-suggested. Numerical simulations with the FDS and CFAST were performed for the n-heptane and n-octane pool fires in the ISO 9705 compartment to evaluate the prediction performances of the previous 1-stage and modified 2-stage design fire curves. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The FDS and CFAST simulations with the 2-stage design fire curve showed better prediction performance for the variation of temperature and major species concentration than the simulations with 1-stage design fire curve. Especially, the simulations with the 2-stage design fire curve agreed with the experimental temperature more reasonably than the results with the 1-stage design fire curve. The FDS and CFAST simulations showed good prediction performance for the temperature in the upper layer of compartment and the results with the FDS and CFAST were similar to each other. However, the FDS and CFAST showed poor and different prediction performance for the temperature in the lower layer of compartment.

Deterioration of Structural Capacity of Fire-Damaged Reinforced Concrete Column (화해를 입은 철근콘크리트 기둥의 구조성능 저하)

  • 이차돈;신영수;홍성걸;이승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.371-374
    • /
    • 2003
  • The degree of changes in mechanical properties of fire-damaged reinforced concrete column depends mostly on sectional geometry, duration exposed to fire, and moisture containment. In order to reasonably assess the deterioration of structural capacity of fire-damaged reinforced concrete column, it is necessary to develop a theoretical model predicting column behavior based on nonlinear heat transfer equation in addition to the traditional mechanics. This research focuses on the development of theoretical model to predict moment-curvature relations of fire-damaged reinforced column. The model is used for the assessment of structural capacity of fire-damaged column in terms of moment-curvature relations and PM interaction curves.

  • PDF

Temperature-time analysis for steel structures under fire conditions

  • Wong, M.B.;Ghojel, J.I.;Crozier, D.A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.275-289
    • /
    • 1998
  • The objective of the paper is to present a method whereby the time required for a steel structure to sustain the effects of a prescribed temperature rise according to real fire curves can be calculated. The method is divided into two parts. The first part deals with the post-yield behaviour of steel structures at elevated temperatures. It takes into account the variation of the properties of steel material with temperature in an incremental elastoplastic analysis so that the safety factor of the structure under certain fire conditions can be assessed. The second part deals with the heat transfer problem of bare steel members in real fire. Factors affecting the heat transfer process are examined and a model for predicting the temperature variation with time under real fire conditions is proposed. This model results in more accurate temperature predictions for steel members than those obtained from previously adopted model.

Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns (화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구)

  • Suh, Yeonwoo;Son, Hee Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.

Modifications to fire resistance ratings of steel frames based on structural configuration: A probabilistic-based approach

  • Behnam, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.661-672
    • /
    • 2021
  • In this article, the role of spans number and length in fire-resistance ratings (FRRs) of fireproofed steel frames are investigated. First, over a span-lengthening scenario, two one- and three-bay frames under the ISO834 fire are examined. It is shown that the FRRs of the frames rely highly on the changes made on their span length. Second, a building designed for three spans number of three, four, and five under natural fire is investigated. The beams are designed for two load-capacity-ratios (LCRs) of optimum and ultimate. The fire curves are determined through a probabilistic-based approach. It is shown that the structural vulnerability vastly increases while the number of spans decreases. The results show that for an optimum LCR, while the five-span frame can meet the required FRR in 87% of the fire scenarios, the four- and three-span frames can meet the required FRR in only 56%, and 50% of the fire scenarios, respectively. For an ultimate LCR, the five-, four- and three-span frames can meet the required FRR in 81%, 50%, and 37.5% of the fire scenarios, respectively. Functional solutions are then proposed to resolve the insufficiencies in the results and to rectify the application of the standard-based FRRs in the cases studied. The study here highlights how employing current standard-based FRRs can endanger structural safety if they are not connected to structural characteristics; a crucial hint specifically for the structural engineering community who may be not well familiar with the fundamentals of performance-based approaches.