• Title/Summary/Keyword: Fire Test

Search Result 1,899, Processing Time 0.023 seconds

Study on Fire Performance of Stud Connectors (스터드커넥터의 내화성능에 관한 연구)

  • Kim, Sung-Bae;Han, Sang-Hoon;Choi, Seng-Kwan
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.59-66
    • /
    • 2009
  • This research aims to conduct a pilot study for the in-fire performance of headed studs, commonly used in composite structures over the world. The robustness of the shear studs in fire appears to be a key element to govern the composite behaviour after a sudden local instability developed in structures such as trusses and cellular beams. In order to experimentally evaluate the residual strength of studs in fire, the standard push-out test was modified for a half of the original set-up to be equipped with a furnace. The adjustments allow the steel section to have a 3-sided exposure against fire. Under the Standard ISO fire, the modified push-out tests under loading were conducted to identify the failure mechanism of the studs in relation to temperature developments.

A Study on the Analytical Method for Fire Resistance Calculation of Asymmetric Slimfloor Beam (비대칭 슬림플로어 합성보의 내화성능 산정에 관한 해석적 방법 연구)

  • Park, Soo-Young;Park, Won-Sup;Kim, Heung-Youl;Hong, Gap-Pyo
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2010
  • Asymmetric Slimfloor Beam (ASB) is a composite beam developed in Europe whose asymmetric H beam is partially inserted in concrete slab. Recently in Korea, Asymmetric Slimfloor Beam has been studied in order to save the story height of a building, reduce the amount of construction materials and increase the fire resistance of a building. On this study, the fire resistance of Asymmetric Slimfloor Beam was checked by a fire test and moment capacity was calculated at fire resistance time by a heat-transfer analysis. Using the analysis result, 3-hour fire resistance constructions consisted of fireproof gypsum boards and ASB were selected and fire resistances of selected constructions were checked.

An Empirical Study on the Relay Pumping Method for the High Pressure of Fire Engine Pump (소방펌프차의 고압방수를 위한 중계방수방식에 관한 실증적 연구)

  • Min, Se-Hong;Kwon, Yong-Joon;Park, Jong-Deok
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.52-59
    • /
    • 2013
  • In this study, tests were conducted to establish a fire engine of relay waterproof and utilization in order to maintain the pressure in a situation that require high-pressure water-resistant such as a high-rise building fire, etc. As a result of test on the change of a relay waterproof pressure, the measurement result with the hydrant intake of a fire engine opened has reduced approximately 20 % compared to the measurement result with the hydrant intake closed. Similar efficiency showed in the test result that change the pressure of 2 fire engines respectively to use them more efficiently at a fire fighting activity site. A fire engine operation and utilization is proposed based on this study result in order to cope effectively with a fire site requiring high-pressure stream in a high-rise building fire, etc. by using a fire engine held at present because there is no fire pump with high-pressure stream ability arranged at the fire station and there is no regulation on high-pressure fire-fighting pumps in a type approval and verification technology criterion for a fire engine.

An Experimental Study on Fire Safety Performance of Glass Wool Sandwich Panel (그라스울 샌드위치패널의 화재 안전 성능에 대한 실험적 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.21-27
    • /
    • 2012
  • A real A real scale fire test was performed in accordance with KS F ISO 9705 test method to investigate the combustion characteristics of glass wool sandwich panels. To do this, six kinds of specimens having different density and thickness were examined. The glass sandwich panels were installed inside the room, which had internal dimensions of 2.4 m wide${\times}3.6m$ deep${\times}2.4m$ high. also, combustion characteristic are determined through the exposure of specimens to flame by the propane gas burner has a capacity of 100 kW (10 minutes) and 300 kW (10 minutes) for total 25 minutes of test time. Results of the real sale fire test, it was found that maximum HRR of each specimen was 333.2~365.5 kW, maximum heat flux was 12.4~12.9 kW/$m^2$ And, maximum internal temperature for all specimens was not over $500^{\circ}C$. During the real scale fire test, flash-over didn't occur and the difference by density and thickness of specimen was not found from the results of HRR, heat flux, and internal temperature measurement.

Transient Heat Transfer Analysis and Fire Test for Evaluation on Fire Resistance Performance of A60 Class Deck Penetration Piece (A60급 갑판 관통 관의 방화성능 평가를 위한 과도 열전달 해석과 화재시험)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and prevent flame diffusion in fire accidents. In case that the A60 piece is newly developed or its initial design is revised, it is important to verify the fire resistance performance using a fire test procedure (FTP) code. In this paper, transient heat transfer analysis was carried out to evaluate the fire resistance design compatibility of the newly devised A60 piece. The analysis results were verified via a fire test. The heat transfer characteristics were also investigated by comparing design specifications, such as diameter, internal configuration, and material type. The analysis was performed using ABAQUS/Implicit, and the fire test was performed according to the FTP code. The fire resistance performance of the A60 pieces satisfied the safety of life at sea convention regulation. The material type was the most important design specification for the A60 piece. Based on the maximum test temperature, the measured temperature of SUS316L material was 25% lower than that of S45C on average. The differences between thermal conductivity and specific heat of each material were 17% and 58%, respectively.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

Study on the combustion performance's classification system for large scale fire tests (실대화재시험의 화재성능 등급분류에 관한 연구)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.99-104
    • /
    • 2008
  • The combustion properties of sandwich panels were tested and analyzed according to ISO 13784-1(Room Corner Test for Sandwich panel building systems) test method for the purpose of establishing the classification of reaction to fire performance. Several variables including heat release rate, smoke production rate, FIGRA, SMOGRA, and so on, were analyzed for specific four materials about sandwich panel systems on each 5 times, totally 20 times. Finally, elements for Classification system were suggested and evaluations for those elements were made.

  • PDF

The Experimental Study of Fire Properties in Reduced-scale Atrium Space (아트리움 공간에서의 화재성상에 관한 축소모델 실험연구)

  • 류승관;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.30-37
    • /
    • 1999
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in atrium space. The scaling laws were derived from $\pi$-parameters which were deduced by dimensional analysis of governing equations (continuity, conservation of momentum and conservation energy). The 1/50 scale experiment simulated the real-scale fire test in SIVANS atrium at Japan were conducted under the scaling laws. And this results were compared with real-scale experiment results. Furthermore these results were visualized by video recording system using laser light sheet.

  • PDF

A Comparison of the Prediction of Sprinkler Response Time Applying Fire Models (스프링클러 반응시간 예측에 대한 화재모델의 비교)

  • 김종훈;김운형;이수경
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.46-52
    • /
    • 2001
  • To evaluate the usability of compartment fire models for predicting sprinkler response time, fire experiment was conducted and measured sprinkler response time. The experimental data was compared with zone model "FASTLite"and field model "FDS"and field Model "SMARTFIRE" A Compartment fire conducted in a 2.4 m by 3.6 m by 2.4 m ISO 9705 room and measured H.R.R was approximately 100.3 kW. In test, Sprinkler activation temperature used is $72^{\circ}c$ and responded at 198s. The output of FASTLite, SMARTFIRE and, FDS for this fire scenario were 209s, 183s, and 192s, respectively. As a results, prediction using FDS model approached to that of test very closely and other models showed good approximated results also.

  • PDF

Study on Correlation between flashover and smoke production rate in real scale reaction-to-fire test (실대규모 화재시험시 플래시오버와 연기발생율간의 상관성 연구)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun;Kim, Woon-Hyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.289-296
    • /
    • 2010
  • This study is aiming at analyzing correlation between flashover's time and maximum smoke production rate's time on sandwich panel specimens. For this analysis, KS F ISO 137481-1 has been performed for 23 kinds of sandwich panels which mainly consist of EPS, PIR, PUR, Glass wool and so on. KS F ISO 13784-1 represents real scale reaction-to-fire test and focuses on measuring flashover phenomenon rather than other tests as like ISO 5660-1 and SBI.

  • PDF