• 제목/요약/키워드: Fire Source

검색결과 407건 처리시간 0.042초

냉동창고 화재 사례를 기반으로 하는 NFPA 921 CODE에 의한 과학적 화재조사 연구 (Scientific fire investigation by NFPA 921 CODE based on frozen warehouse fire case)

  • 박경진;이영기;차성식;정도영;김장오
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.78-85
    • /
    • 2018
  • 본 연구에서는 2017년 20건의 화재가 발생한 냉동창고 화재사례중 발화원인의 판정에 다수의 의견이 존재하였던 사례에 대해 연구하였다. 연구 방법론은 NFPA 921 CODE에서 규정하고 있는 과학적 화재조사 방법이다. 과학적 화재조사 방법은 가설설정을 통한 논리적 추론에 의한 화재조사 방법으로 발화원인 판단에 오류를 최소화 시킨다. 반면에 비과학적 화재조사 방법은 발화원인의 판단에 주관적 추측, 추론적 판단 등의 비합리적 요소의 개입으로 많은 오류를 발생시킨다. 이는 결국 인적, 물적 책임의 문제 및 학문적 퇴보를 가져온다. 특히 목격된 화재(Sighted fire)에 비해 목격되지 않는 화재(Fire not seen)의 경우 원인조사에 있어서 더 많은 발화원인 의 오류를 만든다. 본 연구에서는 2017년 **시 **마트에서 발생한 냉동창고 정온전선의 화재사례에 대해 화재조사 보고서의 검토, 현장조사를 바탕으로한 가설A 와 가설B의 설정하였다. 설정된 가설은 NFPA 921 code 규정하고 있는 연역적 검정 방법중 실험으로 검정하였다. 이러한 분석방법은 향후 목격되지 않는 화재(Fire not seen) 및 원인 불명 화재의 발화원인 판단에 NEW Paradigm의 구축 할 것이다. 또한 본 연구의 실험 자료는 냉동창고 제조사 및 운영사에 통보, 화재 예방을 위한 기초 자료로 활용 될 것이다.

점화원 위치 및 점화시간 변화에 따른 백드래프트 거동에 관한 수치적 연구 (A Numerical Study of the Backdraft Behavior with the Variation of the Ignition Location and Time)

  • 고민욱;오창보;한용식;도규형
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.1-8
    • /
    • 2016
  • The behavior of backdraft in the compartment with different ignition locations and times was numerically investigated. The Fire Dynamics Simulator (FDS) v5.5.3 with a model-free simulation option was used in the numerical simulation of backdraft. The ignition source was located near the inside wall, at the compartment center and near the window opening, respectively. The ignition was started at the instance when the fresh air reached the ignition location or when a sufficient time passed compare to the instance of the arriving of the fresh air to the ignition location. As a result, for the ignition source was located near the inside wall, a strong fire ball was observed at once and the result was similar to the previous experimental result. For the ignition source was located at the center of the compartment, a strong fire ball was occurred and two strong fire balls were observed consecutively for the ignition time was delayed. For the ignition source was located near the window opening and longer time was given for the ignition compare the duration of the fresh air arriving to the ignition location, the rapid temperature variation was not observed because there was no flame. However, for the ignition was started at the instance when the fresh air reached the ignition location, the ignition could be initiated and a intensive fire ball was observed. The pressure measured at the upper inside part of the window opening provided a similar trend with the previous experimental result of compartment backdraft.

건물내 화재에 의한 연소가스 거동 예측에 관한 연구 (A Study on the Prediction of Combustion Gas Behavior Induced by Fire in a Building)

  • 박희용;박경우
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.267-281
    • /
    • 1994
  • The Combustion gas behavior induced by fire in a building is numerically investigated. The typical building for this analysis is partially divided by a vertical baffle projecting from the ceiling. The solution procedure includes the low Reynolds number ${\kappa}-{\varepsilon}$ model for the turbulent flow and the discrete ordinates method is used for the calculation of radiative heat transfer equation. The effects of the location and size of fire source and baffle length on velocity and temperature distributions, species mass fraction and flame location are analyzed. As the results of this study, it is found that the case when the fire source is located at the vertical wall is more dangerous than at the bottom wall in view of the combustion products and flame location. It is also found that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

Causes of the Fire at an Indoor Shooting Range in Busan

  • Park, Woe-Chul;Lee, Nae-Woo;Jeong, Lee-Gyu
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2010
  • On-site examinations and fire simulation were carried out to speculate on causes of the fire at an indoor shooting range in Busan. An experiment on the ignitability of unburned gunpowder was also conducted. Cigarette was the most likely source of ignition for the fire, while impact of a stray bullet failed to ignite the unburned gunpowder. The explosion in the shooting area was presumed to be caused by violent combustion of the polyurethane foam and unburned gunpowder accumulated on it. Fire safety measures include prohibit of use of profile polyurethane foam, complete clean-up of unburned gunpowder, and removal of steel components from the bullet trap.

저급탄 미분기 화재발생 인자분석 연구 (Engineering Control of Mill Fire for High Volatile Sub-bituminous Coal)

  • 길상인;박호영;김영주;윤성환
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.53-58
    • /
    • 2013
  • Lots of Coal power plants (about 30) using bituminous coals are being run in Korea. The use of high volatile low grade sub-bituminous coal is increasingly extended because of imbalance between the worldwide coal supply and demand. Mill-fire has been an important issue since the use of such sub-bituminous coal. In existing coal plants of Korea, shutdown of coal and air supplies could be only a way, and an alternative has not been found in suppressing the mill fire. The inside fowfield in the mills has a highly fuel-rich, low temperature, and high velocity and non-reactive such that it could be a nonreactive system essentially. Nevertheless, occasional fire-occurrence could be attributed to the existence of an ignition source. However it has not been so far investigated in detail. The current work has a focus on suppressing the mile fire via some parametric experimental study such as effects of temperature, residence time, ignition source, and inert gas mixing. The results show that an small amount of $CO_2$- or $N_2$-mixing with air is very effective in suppressing fire formation even at high temperatures or flying sparks. The results suggest that exhaust gas recirculation into the mill should be an alternative to suppress mill fire.

환기량 조건이 열차 화재 성장에 미치는 영향성에 대한 FDS 화재 시뮬레이션 (Numerical study of the Effect of Ventilation Condition on Rolling Stock Fire Growth through the FDS Simulation)

  • 양성진;이창덕;오지은;강찬용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.124-132
    • /
    • 2010
  • To predict and analyze the rolling stock's fire growth is considered not only important factor in estimating hazard analysis of rolling stock, but also a primary factor in aspect of a rail load facility. Because it's could be regarded as a ignition source in risk assesment for the facility i.e. tunnel and station. However, currently, standardized method to predict and analyze the fire growth has not been completed yet. it is due to the fact that fire growth is not only depended on thermal property of interior materials, but also is affected dominantly by various factors such as ignition source (characterized by location, duration, and intensity), train running condition and in/exterior ventilation condition. Especially, ventilation condition is one of the most effective factor to affect fire growth in compartment space as noticed by under-ventilation fire condition. In this study, the effect of each ventilation condition on fire growth and load were examined through the numerical method through FDS (Fire Dynamics Simulator).

  • PDF

대심도 지하역사에서의 화재시 플랫폼 스크린 도어에 의한 열, 연기 거동 영향 분석 (The Analysis of the effects of the platform screen door on the fire driven flow in The Deeply Underground Subway Station)

  • 장용준;김학범;이창현;정우성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1984-1989
    • /
    • 2008
  • In this study, fire simulations were performed to analyze the characteristics of the fire driven flow and the effects of the platform screen door on the smoke flow in the station, when the fire occurred in the center of the platform. Soongsil Univ. station (line number 7, 47m in depth underground) was chosen which was the one of the deepest underground subway stations in the Seoul metro, SMRT. The parallel computational method was employed to compute the heat and mass transfer eqn's with 6 CPUs of the linux clustering machine. The fire driven flow was simulated with using FDS code in which LES method was applied. The Heat release rate was 10MW and The Ultrafast model was applied for the growing model of the fire source. The 10,000,000 structured grids were used.

  • PDF

FDS code를 이용한 교량하부창고 화재발생원 영향분석 (Investigation of the Fire Source in the Warehouse under Bridge using FDS Code)

  • 지광습;이승정;신연호;심재원;김지환
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.663-673
    • /
    • 2011
  • 본 연구에서는 FDS code를 이용하여 교량하부창고 화재발생원과 교량높이의 영향을 분석하였다. 헵탄을 이용한 단위가연물의 연소실험, 실물모형 연소실험 결과와 FDS code를 이용한 해석결과의 비교를 통하여 FDS code의 유효성을 검증하였다. 이를 이용하여 교량하부 표준창고구조물의 실제 화재시나리오를 적용하여 교량높이 및 창고내부 가연물에 따른 콘크리트의 폭렬, 강도손실, 보강철근의 강도손실로 나누어 교량의 화재안전성을 평가하였다. 연구결과, 대부분의 교량이 하부창고화재에 대해 폭렬에 취약한 것을 확인할 수 있었다. 화재강도는 도서류가 가장 강하며 30m 높이 교량에 콘크리트의 강도저하, 폭렬 및 보강철근 강도저하를 가장 크게 발생시킬 것으로 예측되었으며, 고무류 창고화재의 경우 30m 이상 높이의 교량에 대해 화재안전성을 확보할 수 있었다.