• Title/Summary/Keyword: Fire Size

Search Result 631, Processing Time 0.034 seconds

A Study on Ship Evacuation Safety Consequent on the Size and Sort of Fire (화재의 크기와 종류에 따른 선박 피난 안전 연구)

  • KIM, Won-Ouk;KIM, Dae-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1358-1364
    • /
    • 2016
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crewmen are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. According to the ship fire survey, about 50% of the total fire accidents occurred at an engine room, and the main fire origin was analyzed to be oil. In addition, ship fire breaks out in the order of baggage racks and living quarter. In short, the survey indicates that all sorts of fires belonging to A, B, C and D-class have occurred. This study, targeting an actual passenger ship 'A', found the response time to evacuation, during which the people on board a ship recognize the outbreak of fire, and act, and the travel time for evacuation which is the actual travel time. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of passengers and crew based on the collected simulation data by fire size and sort. As a result of the analysis, it was found that when examining the only actual evacuation movement time excepting the response time to evacuation, people are safe by completing evacuation before the effective evacuation time only in case fire size is 100Kw among all sorts of fires. In other words, in case of the outbreak of fire more than 1 MW, it was found to fail to meet evacuation safety regardless of fire size.

A Study on Grid Size and Generation Method for Fire Simulations for Ship Accommodation Areas (선박 거주구역 화재시뮬레이션을 위한 격자크기와 생성방법에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.791-800
    • /
    • 2017
  • For fires in ship accommodation areas, if it is possible to predict the pattern in which fire will spread and suggest proper countermeasures according to a situation using a fire simulation tool, fire damage may be reduced. However, fire simulations have a practical limit: a significant amount of time is required to analyze the results due to the size of the computational domain and the number of grids. Therefore, in this study, applicable grid size for fire simulations to predict fire patterns in ship accommodation areas was analyzed, and a generation method was conducted to predict fire behavior in real time. As a result, a value within 0.25[m] was judged appropriate as an applicable grid size for ship accommodation areas. Also, in comparison with studies using a single mesh generation method, the visibility value was similar, within 4.3 %, as was the temperature value, within 8.3 %, when a multi mesh generation method was used, showing a decline of 80 % in analysis time. Therefore, it was confirmed that composing a grid using multi mesh was effective for reducing analysis time.

An Experimental Study on the Fire Resistance Performance of the Reinforced Concrete Columns According to the Cross Section Size and Depth of Concrete Cover (단면크기 및 피복두께 변화에 따른 철근콘크리트 기둥의 내화성능에 관한 실험적 연구)

  • Cho, Kyung-Suk;Yeo, In-Hwan;Cho, Bum-Yeon;Kim, Heung-Youl;Min, Byung-Yeol
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-84
    • /
    • 2011
  • Recent researches of the fire resistance in concrete focus on how to secure relevant functions in the high strength concrete. However, the demand of normal strength concrete less than 40 MPa takes most of the total concrete demand. Therefore, fire resistance study needs to cover not only high strength concretes but also normal strength concretes. This study evaluated the fire resistance performance of 40 MPa concrete columns, taking the concrete covering thickness and the size of section as variables. Consequently, the fire resistance performance improved as the section size and the covering thickness became larger.

A Numerical Study of a Room Fire for Fire Sizes II. wall fire and corner fire (FDS를 이용한 실내화재 모사의 문제점 II. 벽면형 및 모서리형 화재)

  • Ko Kyung-Chan;Park Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.9-13
    • /
    • 2004
  • To confirm the previous finding that FDS predicts a fire growth rate too rapid compared with an experiment in a center fire in a room with an opening, the same computational fluid dynamics was applied to two types of fires, wall fire and comer fire. First the grid size was chosen to eliminate possible numerical errors due to a coarse grid system. Then the two types of fires were simulated for three different fire sizes, 7.65, 21.25, and 51.57kW for each type, which are the same as in the experiment to be compared with. The fires were predicted to grow too fist although the average temperatures and heights of the neutral planes were in good agreement with measurement.

Selection of Grid Size in Fire Simulation for Large Scale Buildings by Using FDS (FDS를 이용한 대규모 건축물 화재 시뮬레이션의 격자크기 선정)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.67-72
    • /
    • 2012
  • Fire simulation was carried out for an enclosure with three doorways of $20{\times}10{\times}3m^3$ and a cleanroom of $44{\times}48{\times}10m^3$, to suggest appropriate grid size in fire simulations by using of FDS for large scale buildings. The variations of temperature and visibility with time were compared for the x and y direction grid sizes of 0.1~1.0 m (aspect ratios 0.5~5.0), fixing the z direction grid size 0.2 m. The results showed that the grid sizes 0.5 m (aspect ratio 2.5) or smaller are appropriate among the grid sizes tested, whereas 1.0 m is not acceptable. It was confirmed that estimate of the available safe egress time requires a great care due to fluctuations in temperature, visibility, etc., and further investigations on the grid size when selecting a large grid size inevitable, and on the aspect ratios for a larger grid are in need.

An Experimental Study on the Analyze the Pressure Difference in case of Fire in Vertical Space of High-Rise Buildings (고층건축물 수직공간의 화재 시 압력차 분석을 위한 실험적 연구)

  • Huh, Yerim;Kim, HyeWon;Jin, SeungHyeon;Kwon, YoungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.111-112
    • /
    • 2020
  • As buildings in South Korea become more skyscrapers, the risk of fire is also emerging. Thus, regulations, regulations, and guidelines are being improved to prevent the spread of smoke in the event of a fire in high-rise buildings, but research on smoke flow and pressure distribution in vertical spaces is insufficient. Therefore, in this study, the temperature of each floor in the vertical space according to the size of the fire is measured through the miniature model experiment, and the pressure difference is calculated to establish the basic data for the improvement of the performance of domestic air supply facilities in the future. Thus, a scale model of one-sixth the size of the actual building was produced to measure the temperature, and the pressure difference was derived by substituting the value for the expression. The pressure difference varies depending on the size of the cause of the fire, and it is believed that the differential pressure and conditions of the building should be taken into account before calculating the supply volume for the analysis of the pressure difference according to the size of the cause of the fire in the event of fire.

  • PDF

The Water Curtain Installation Guideline for Fire Spread Prevention in Market (재래시장의 화재확산 방지를 위한 수막설비 설치 지침)

  • Choi, Jung-Uk;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.269-274
    • /
    • 2016
  • This paper aims to suggest the water curtain installation guideline for prevention of fire spread. The water curtain systems play a role in preventing fire spread which is caused by fire flames and radiation heat release from a fire source. The radiation attenuation ratio is affected by the water droplet size, vertical distance from the nozzle and flow rate. This study suggests the water curtain installation guideline as follows : (1) Investigation of a reference store array (2) Calculation of the number of drencher heads (3) Review of the relationship between droplet size and attenuation factor depending on the height of the drencher head (4) Review of a drencher head array and spray overlapping. The reference traditional market in which a fire compartment is installed using a water curtain can be predicted to have a radiation attenuation ratio of 50%.

Simulation of the Brownian Coagulation of Smoke Agglomerates in the Entire Size Regime using a Nodal Method (결절법을 이용한 전영역에서의 연기입자 응집체에 대한 브라운응집현상 해석)

  • Goo, Jae-Hark
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.681-691
    • /
    • 2011
  • The size distributions of smoke particles from fire are prerequisite for the studies on fire detection and adverse health effects. Above the flame of the fire, coagulation dominates and the smoke particles grow from 1 to 50 nm up to 100 to 3,000 nm, sizes ranging from the free-molecular regime to the continuum regime. The characteristics of the agglomeration of the smoke particles are well known, independently for each of the free-molecular and continuum regimes. However, there are not many systematic studies in the entire regime by the complexity of the mechanisms. The purpose of this work is to find the characteristics of the development of the size distribution of smoke particles by agglomeration in the entire size range covering the free-molecular regime, via transition regime, to the near-continuum and continuum regime for each variation of parameters such as fractal dimension, primary particle size and dimensionless coagulation time. In this work, the dynamic equation for the discrete-size spectrum of the particles was solved using a nodal method based on the modification of a sectional method. In the calculation, the collision frequency function for the entire regime, which is derived by using the concept of collision volume and general enhancement function, was applied. The self-preserving size distribution for the entire regime is compared with the ones for the free-molecular or continuum regimes for each variation of the parameters.

Measurement of the Size Distribution of Smoke Particles with Plastic Types Under Various Fire Conditions (다양한 화재조건에서 플라스틱 종류에 따른 연기입자의 크기분포 변화 측정)

  • Goo, Jaehark;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.8-15
    • /
    • 2017
  • Most fire victims succumb to smoke inhalation, and fire smoke toxicity from interior materials is increasing with increased use of plastics. Large amounts of hazardous effects of smoke are related to deposition of smoke particles in respiratory tracts, and deposition characteristics are influenced by size distribution of particles. Thus, it is essential to know the size distribution of smoke particles from plastics for hazard analysis of fire smoke. In a recent study, it has been shown that size distributions of smoke particles from PP are different from wood in many aspects. In order to know whether other plastics show the same characteristics as PP, size distributions of smoke particles from four plastic materials (LDPE, PA66, PMMA, and PVC) were measured in real time under each fire type with various temperature and oxygen supply. In this study, smoke particles from different plastics were generated uniformly by using steady-state tube furnace method provided in ISO/TS 19700. Their size distributions were measured by using an electrical low pressure impactor (ELPI). Results of measurements showed that size distributions of smoke particles from these four plastic materials were similar to those from PP in many aspects. However, they were distinctively different from those of wood.

Analysis on the Implementation Status of Domestic PBD (Performance Based Design) - Focusing on the Fire Scenario and Simulation (국내 성능위주설계의 시행현황 분석 - 화재시나리오 및 시뮬레이션을 중심으로)

  • An, Sung-Ho;Mun, Sun-Yeo;Ryu, Ill-Hyun;Choi, Jun-Ho;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.32-40
    • /
    • 2017
  • The current status of Performance-Based Design (PBD) implemented in 4 wide areas (Seoul, Gyeonggi, Incheon and Busan) over the past 5 years was reviewed with regard to the number of PBD implementation and target buildings. Then, detailed status related to fire scenarios, input information for fire simulation, and grid size were analyzed with the pre-review for the PBD. As a result, the domestic PBD was mainly applied to the mixed occupancy. In the fire simulations performed on the identical fire scenario and fire space, the maximum heat release rate (HRR) varied significantly depending on the PBD designer. Various combustibles were also considered for the identical fire source, and their combustion properties also showed considerable uncertainty. In addition, the applicability of accurate input information for predictive models of heat and smoke detectors was examined. Finally, the average grid size for the fire simulation using Fire Dynamics Simulator (FDS) was analyzed, and the improvement of PBD to minimize designer dependency was proposed.