• Title/Summary/Keyword: Fire Simulation

Search Result 1,011, Processing Time 0.031 seconds

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

The effect of portal compression sensor on the quality of chest compressions during cardiopulmonary resuscitation (CPR): A mannequin based simulation study (심페소생술 시행 시에 휴대용 압박 센서 활용이 흉부압박의 질에 미치는 영향: 마네킹 기반 시뮬레이션 연구)

  • Yang, Hyun-Mo;Baeck, Kyung-Min;Kim, Kwang-Suk;Yoon, Byung-Gil;Kim, Jin-Woo;Kim, Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.744-750
    • /
    • 2013
  • This study is to collect a basic data of how Cardiopulmonary Resuscitation (CPR) procedure can influence to cardiac arrest patient with and without the Depth Device during the average transport time period. The data has achieved by comparing result sheet of CPR procedure by hands only versus with Depth Device by twenty 1st and 2nd class Emergency Medical Technician (EMT) from five different fire stations in city of Chong-Ju, and twenty Emergency Rescue major students who completed the BLS provide course. The experiment participators experienced loss of compression depth and rate increase over time. However, the CPR procedure with Depth Device shows that both EMT and students to allow maintaining both the compression depth and rate. The experiment leaves a positive result for CPR operators and considers being valuable domain for cardiac arrest patient.

The Road Reservation Scheme in Emergency Situation for Intelligent Transportation Systems (지능형 교통 시스템을 위한 긴급 상황에서의 도로 예약 방식)

  • Yoo, Jae-Bong;Park, Chan-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1346-1356
    • /
    • 2011
  • Transportation has been playing important role in our society by providing for people, freight, and information. However, it cuts its own throat by causing car accidents, traffic congestion, and air pollution. The main cause of these problems is a noticeable growth in the number of vehicles. The easiest way to mitigate these problems is to build new road infrastructures unless resources such as time, money, and space are limited. Therefore, there is a need to manage the existing road infrastructures effectively and safely. In this paper, we propose a road reservation scheme that provides fast and safe response for emergency vehicles using ubiquitous sensor network. Our idea is to allow emergency vehicle to reserve a road on a freeway for arriving to the scene of the accident quickly and safely. We evaluate the performance by three reservation method (No, Hop, and Full) to show that emergency vehicles such as ambulances, fire trucks, or police cars can rapidly and safely reach their destination. Simulation results show that the average speed of road reservation is about 1.09 ~ 1.20 times faster than that of non-reservation at various flow rates. However, road reservation should consider the speed of the emergency vehicle and the road density of the emergency vehicle processing direction, as a result of Hop Reservation and Full Reservation performance comparison analysis. We confirm that road reservation can guarantee safe driving of emergency vehicles without reducing their speed and help to mitigate traffic congestion.

A Level-set Parameterization for Any 3D Complex Interface Related to a Fire Spread in Building Structures (복잡한 CAD 형상의 매개변수화를 통한 3차원 경계면 레벨-셋 알고리즘 개발 및 적용)

  • Kim, Hyun-Jun;Cho, Soo-Yeong;Lee, Young-hun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • To define an interface in a conventional level-set method, an analytical function must be revealed for an interfacial geometry. However, it is not always possible to define a functional form of level sets when interfaces become complex in a Cartesian coordinate system. To overcome this difficulty, we have developed a new level-set formalism that discriminates the interior from the exterior of a CAD modeled interface by parameterizing the stereolithography (STL) file format. The work outlined here confirms the accuracy and scalability of the hydrodynamic reactive solver that utilizes the new level set concept through a series of tests. In particular, the complex interaction between shock and geometrical confinements towards deflagration-to-detonation transition is numerically investigated. Also, a process of flame spreading and damages caused by point source detonation in a real-sized plant facility have been simulated to confirm the validity of the new method built for reactive hydrodynamic simulation in any complex three-dimensional geometries.

Energy-Efficient Data-Aware Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 데이터 인지 라우팅 프로토콜)

  • Lee, Sung-Hyup;Kum, Dong-Won;Lee, Kang-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • In many applications of wireless sensor networks, sensed data can be classified either normal or urgent data according to its time criticalness. Normal data such as periodic monitoring is loss and delay tolerant, but urgent data such as fire alarm is time critical and should be transferred to a sink with reliable. In this paper, by exploiting these data characteristics, we propose a novel energy-efficient data-aware routing protocol for wireless sensor networks, which provides a high reliability for urgent data and energy efficiency for normal data. In the proposed scheme, in order to enhance network survivability and reliability for urgent data, each sensor node forwards only urgent data when its residual battery level is below than a threshold. Also, the proposed scheme uses different data delivery mechanisms depending on the data type. The normal data is delivered to the sink using a single-path-based data forwarding mechanism to improve the energy-efficiency. Meanwhile, the urgent data is transmitted to the sink using a directional flooding mechanism to guarantee high reliability. Simulation results demonstrate that the proposed scheme could significantly improve the network lifetime, along with high reliability for urgent data delivery.

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.

A Study on Configuration Optimization for Rotorcraft Fuel Cells based on Neural Network (인공신경망을 이용한 연료셀 형상 최적화 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • Crashworthy fuel cells have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel cells to prevent most fatality due to post-crash fire. Foreign manufacturers have followed their long term experience to develop their fuel cells, and have reflected the results of crash impact tests on the trial-and-error based design and manufacturing procedures. Since the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. In the present study a number of numerical simulations on fuel cell crash impact tests are performed with a crash simulation software, Autodyn. The resulting equivalent stresses are further analysed to evaluate a number of appropriate design parameters and the artificial neural network and simulated annealing method are simultaneously implemented to optimize the crashworthy performance of fuel cells.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

An Analysis of the Appropriate Number of People Per Apartment Household According to NFPA 101 (NFPA 101에 의한 아파트 한 세대당 적정 수용인원 분석)

  • Cho, Ji-Eun;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • The study analyzes the appropriate number of people per a household by applying an evacuation simulation to a 27-floor apartment in accordance with the NFPA 101 standard. The results of the analysis are as follows. First, if there are three people residing in each household, there would be 156 households in total, of which 85.25% were evacuated within 5 minutes. Second, 208 households with 4 residents were evacuated within 5 minutes. Third, if there are five people residing in each household, there would be a total of 260 households and 71.92% of residents were evacuated within 5 minutes. Lastly, 62.82% of the 312 households, each consisting of 6 people, were evacuated within 5 minutes. Measures to reduce evacuation time include determining the width of the stairs according to the number of people indoors, the number of floors in the building, the slope of stairs, and the users' characteristics, the design reflecting the ventilation conditions of the stairs, the installment of outdoor evacuation stairs, two-way stairs, evacuation lift, and the installation of an evacuation safety zone for people to evacuate outside of the building in the middle floors. In addition, measures, such as the mandatory installation of automatic emergency door open-close device to the rooftop, are required to facilitate rooftop evacuation.

A Study on 3D Model Building of Drones-Based Urban Digital Twin (드론기반 도심지 디지털트윈 3차원 모형 구축에 관한 연구)

  • Lim, Seong-Ha;Choi, Kyu-Myeong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.163-180
    • /
    • 2020
  • In this study, to build a spatial information infrastructure, which is a component of a smart city, a 3D digital twin model in the downtown area was built based on the latest spatial information acquisition technology, the drone. Several analysis models were implemented by utilizing. While the data processing time and quality of the three types of drone photogrammetry software are different, the accuracy of the construction model is ± 0.04 in the N direction and ± 0.03m in the E direction. In the m and Z directions, ± 0.02m was found to be less than 0.1m, which is defined as the allowable range of surveying performance and inspection performance for the boundary point in the area where the registration of the boundary point registration is executed. 1: 500 to 1 of the aerial survey work regulation: The standard deviation, which is the error limit of the photographic reference point of the 600 scale, appeared within 0.14 cm, and it was found that the error limit of the large scale specified in the cadastral and aerial survey was satisfied. In addition, in order to increase the usability of smart city realization using a drone-based 3D urban digital twin model, the model built in this study was used to implement Prospect right analysis, landscape analysis, Right of light analysis, patrol route analysis, and fire suppression simulation training. Compared to the existing aerial photographic survey method, it was judged that the accuracy of the naked eye reading point is more accurate (about 10cm) than the existing aerial photographic survey, and it is possible to reduce the construction cost compared to the existing aerial photographic survey at a construction area of about 30㎢ or less.