• Title/Summary/Keyword: Fire Prediction

Search Result 446, Processing Time 0.038 seconds

PM Management Methods Considering Condensable PM Emissions from Stationary Sources in Seoul and Incheon (고정오염원의 응축성 먼지 배출량을 고려한 서울과 인천의 먼지 관리방안)

  • Lee, Im Hack;Choi, Doo Sung;Ko, Myeong Jin;Park, Young-Kwon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2017
  • In this study, the new particulate matter emissions considering condensable PM (CPM) of stationary pollutant sources were calculated to modify the CAPSS emissions based on only filterable PMs in Seoul and Incheon. When the new calculated emissions were compared to the existing filterable PM based emissions of local governments, different contribution patterns of emission sources were found. For example, the proportion of mobile sources was high when the filterable PM was considered; however, the contribution of non-industrial sources was dominant in Seoul when the emissions of CPM were considered. Also, the proportion of energy industrial combustion and manufacturing combustion sources was significant in Incheon when CPM emissions considered. Therefore, it seems to be much desirable to consider CPM emissions for determining adequate locations of collective energy facilities and manufacturing combustion facilities in the future. In addition, CPM should be considered to solve the dust problem nationwide. The emission analysis, diagnosis, prediction and countermeasures using CPM emissions should be appropriately performed.

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture (n-Decane과 sec-Butanol 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-Decane+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Decane and sec-Butanol which constituted binary system were $212^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Decane+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

An Experimental Study on the Mechanical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 역학적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.5-8
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on mechanical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200$^{circ}C$, the high strength concrete show degradation at 100$^{circ}C$ and restoration at 200$^{circ}C$. The high strength concrete show elastic deformation at 20 - 200$^{circ}C$. Second, between 300 to 400$^{circ}C$, the mechanical properties of the high strength concrete which are exposed to fire show $75\~95\%$ as compared to the original properties because the thermally expanded ingredients of concrete, aggregates and cement paste, etc. Finally, beyond 600$^{circ}C$, the high strength concrete shows $75\~80\%$ reduction in thermal properties as compared to the normal concrete in the range of 600 to 800$^{circ}C$ and it shows $10\~30\%$ as compared to the original properties.

  • PDF

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

Comparisons of Core Temperature Between a Telemetric Pill and Heart Rate Estimated Core Temperature in Firefighters

  • Pearson, Stephen J.;Highlands, Brian;Jones, Rebecca;Matthews, Martyn J.
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.99-103
    • /
    • 2022
  • Background: Firefighters may experience high environmental temperatures or carry out intensive physical tasks, or both, which leads to increased core body temperature and risk of fatalities. Hence there is a need to remotely and non-invasively monitor core body temperature. Methods: Estimated (heart rate algorithm) and actual core body temperature (ingested telemetric pill) measures were collected simultaneously for comparison during training exercises on 44 firefighter volunteers. Results: Prediction of core body temperature varied, with no specific identifiable pattern between the algorithm values and directly measured body core temperatures. Group agreement of Lin's Concordance of 0.74 (95% Upper 0.75, lower CI 0.73), was deemed poor. Conclusion: From individual agreement data Lin's Concordance was variable (Min 0.11, CI 0.13-0.01; Max 0.83, CI 0.86-0.80), indicating that the heart rate algorithm approach was not suitable for core body temperature monitoring in this population group, especially at the higher more critical core body temperatures seen.

Characteristics Analysis of Highly Elastic Materials according to the Graphite Content and a Simulation Study of Physical Properties Prediction Using a Nonlinear Material Model (열팽창성 그래파이트 함량에 따른 고탄성 도료 소재의 특성 분석 및 비선형 재료모델을 활용한 물성 예측 시뮬레이션 연구)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Kim, Dae-cheol;Lee, Byung-Su;Sim, Jee-Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.250-260
    • /
    • 2022
  • In this research, a high-elasticity acrylic emulsion binder with core-shell polymerization and self-crosslinking system is mixed with a flame-retardant water-dispersed polyurethane (PUD) binder. In addition, finite element analysis was conducted through virtual engineering software ANSYS by applying three representative nonlinear material models. The most suitable nonlinear material model was selected after the relative comparison between the actual experimental values and the predicted values of the properties derived from simulations. The selected nonlinear material model is intended to be used as a nonlinear material model for computational simulation analysis that simulates the experimental environment of the vibration test (ASTM E1399) and the actual fire safety test (ASTM E1966). When the mass fraction of thermally expandable graphite was 0.7%, the thermal and physical properties were the best. Among the nonlinear material models, the simulation result of the Ogden model showed the closest value to the actual result.

Comparison of Diagnostic Accuracy and Prediction Rate for between two Syndrome Differentiation Diagnosis Models (중풍 변증 모델에 의한 진단 정확률과 예측률 비교)

  • Kang, Byoung-Kab;Cha, Min-Ho;Lee, Jung-Sup;Kim, No-Soo;Choi, Sun-Mi;Oh, Dal-Seok;Kim, So-Yeon;Ko, Mi-Mi;Kim, Jeong-Cheol;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.938-941
    • /
    • 2009
  • In spite of abundant clinical resources of stroke patients, the objective and logical data analyses or diagnostic systems were not established in oriental medicine. In the present study we tried to develop the statistical diagnostic tool discriminating the subtypes of oriental medicine diagnostic system, syndrome differentiation (SD). Discriminant analysis was carried out using clinical data collected from 1,478 stroke patients with the same subtypes diagnosed identically by two clinical experts with more than 3 year experiences. Numerical discriminant models were constructed using important 61 symptom and syndrome indices. Diagnostic accuracy and prediction rate of 5 SD subtypes: The overall diagnostic accuracy of 5 SD subtypes using 61 indices was 74.22%. According to subtypes, the diagnostic accuracy of "phlegm-dampness" was highest (82.84%), and followed by "qi-deficiency", "fire/heat", "static blood", and "yin-deficiency". On the other hand, the overall prediction rate was 67.12% and that of qi-deficiency was highest (73.75%). Diagnostic accuracy and prediction rate of 4 SD subtypes: The overall diagnostic accuracy and prediction rate of 4 SD subtypes except "static blood" were 75.06% and 71.63%, respectively. According to subtypes, the diagnostic accuracy and prediction rate was highest in the "phlegm-dampness" (82.84%) and qi-deficiency (81.69%), respectively. The statistical discriminant model of constructed using 4 SD subtypes, and 61 indices can be used in the field of oriental medicine contributing to the objectification of SD.

A Study on Flash Points of a Flammable Substancea - Focused on Prediction of Flash Points in Ternary System by Solution Theory - (가연성물질의 인화점에 관한 연구 -용액론에 의한 3성분계의 인화점 예측을 중심으로-)

  • 하동명;이수경
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.14-20
    • /
    • 2001
  • The flash points are one of the most important fundamental properties used to determine the potential for fire and explosion hazards of flammable substances. A classification of the flash points is important for the safe handling of flammable liquids which constitute the solvent mixtures. Basic to all flash points behavior are vapor pressure and explosive limits(lower explosive limit and upper explosive limit). The flash points of flammable solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this study, the reference values of lower flash points were compared with the calculated values by using Raoult's law and MRSM(modified response surface methodology) model. The lower flash points were in agreement with the predicted by Raoult's law and MRSM model. By means of this methodology, it is possible to evaluate reliability of experimental data of the flash points of the flammable mixtures.

  • PDF

Prediction of Minimum Oxygen Concentration(MOC) of Hydrocarbons and Halogenated Hydrocarbons (탄화수소 및 할로겐화탄화수소의 최소산소농도(MOC)의 예측)

  • Ha Dong-Myeong;Jeong Kee-Sin
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.1-7
    • /
    • 2005
  • An accurate knowledge of the minimum oxygen concentration(MOC) is important in developing appropriate prevention and control measures in industrial fire protection. In this study, by using the literature data and RSM(response surface methodology), the new equations for predicting the MOC are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated MOC for hydrocarbons were $3.48\%\;and\;0.37\;vol\%$, respectively and the correlation coefficient was 0.919. The A.A.P.E and the A.A.D of the reported and the calculated MOC for halogenated hydrocarbons and hydrocarbons were $5.06\%$ and $0.59vo1\%$, and the correlation coefficient was 0.938. The values calculated by the proposed equations were in good agreement with the literature data. Therefore, it is expected that this proposed equations will support the use of the research for other flammable substances.