• Title/Summary/Keyword: Fire Heat

Search Result 1,631, Processing Time 0.025 seconds

Simulation of Under-Ventilated Fires (환기부족 화재의 시뮬레이션)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • Propane fires of 1000 to 3000 kW in the ISO 9705 fire room were simulated using FDS to study the problem of decreasing temperature with increasing fire size. A criterion is proposed for under-ventilated fires. The computed temperature at 2000 kW and above was lower than that at 1500 kW. The heat release rate was limited by a lack of oxygen in the simulation. It was found that the heat release rate can therefore be a criterion for under-ventilated fires in simulations. Fires of 1700 kW and above in the ISO 9705 fire room are predicted to be under-ventilated.

A Study on Risk Analysis by Type of Ceiling Material Based on Fire Theory (화재이론에 기초한 천장재 종류별 위험성 분석에 관한 연구)

  • Kim, HyeWon;Kim, YunSeong;Lee, ByeongHeun;Jin, SeungHyeon;Koo, InHyuk;Kwon, YoungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.116-117
    • /
    • 2021
  • In general, when a building fire occurs, the heat flow rises by buoyancy, which affects the temperature rise of the ceiling. In addition, when the ceiling ignites, the fire spreads rapidly due to horizontal spread and radiant heat. According to the fire investigation, most of the large fires have a common characteristic that the fire spreads to the ceiling and causes many casualties. Therefore, it is considered that it is necessary to review the fire risk of ceiling materials used in buildings to prevent the spread of fire to the ceiling. Therefore, in this study, combustion characteristics such as the amount of heat released and ignition time of each SMC, DMC, and gypsum board were checked using a Cone Calorimeter, and the ignition temperature was calculated by substituting them into the fire theory. As a result, the ignition temperature of SMC was 449K, that of DMC was 1492K, and that of gypsum board was 677K.

  • PDF

Burning Tests for Interior Flooring Materials (건축용 바닥재의 연소성능 시험)

  • Lee, Bong-Woo;Lee, Jang-Won;SaKong, Seong-Ho;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.30-37
    • /
    • 2008
  • We have performed the inflammability test for various flooring materials through a radiant heat panel tester by using the specification KSISO 9239-1 (an examination method of flooring materials) that has been set as an international standard for the fire prevention means of interior flooring materials. We have measured the flame spread distance, critical heat flux and smoke density generated by the fire of various flooring materials while using the radiant heat panel tester. The measurement result has shown the burning characteristics different from each other by the respective flooring materials and we could see that the surface materials and construction elements influence greatly on the heat release and smoke generation. We could see that the evaluation method above is an important test method in evaluating the critical heat flux, smoke generation and flame spread distance that are Important factors in studying for fire risks and it is judged that setting and applying a fire evaluation method of flooring materials suitable for the domestic construction use would be relevant.

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

Experimental Study of Fire Characteristics of a Tray Flame Retardant Cable (트레이용 난연 전력 케이블의 화재특성에 관한 실험적 연구)

  • Kim, Sung Chan;Kim, Jung Yong;Bang, Kyoung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.39-43
    • /
    • 2013
  • The present study has been conducted to investigate the fire combustion properties and fire behavior of an IEEE-383 qualified flame retardant cable. The reference reaction rate and reference temperature which are commonly used in pyrolysis model of fire propagation process was obtained by the thermo-gravimetric analysis of the cable component materials. The mass fraction of FR-PVC sheath abruptly decreased near temperature range of $250{\sim}260^{\circ}C$ and its maximum reaction rate was about $2.58{\times}10^{-3}$[1/s]. For the XLPE insulation of the cable, the temperature causing maximum mass fraction change was ranged about $380{\sim}390^{\circ}C$ and it has reached to the maximum reaction rate of $5.10{\times}10^{-3}$[1/s]. The flame retardant cable was burned by a pilot flame meker buner and the burning behavior of the cable was observed during the fire test. Heat release rate of the flame retardant cable was measured by a laboratory scale oxygen consumption calorimeter and the mass loss rate of the cable was calculated by the measured cable mass during the burning test. The representative value of the effective heat of combustion was evaluated by the total released energy integrated by the measured heat release rate and burned mass. This study can contribute to study the electric cable fire and provide the pyrolysis properties for the computational modeling.

Test Methods for FDS modeling for passenger trains (철도차량 화재모델링에서의 재료별 연소특성 시험법 조사)

  • Lee, Duck-Hee;Lee, Cheul-Kyu;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.982-988
    • /
    • 2007
  • The input data for the interior material of the train is one of the key points for enhancing the accuracy of fire simulation. In this study, we investigated the Fire Test Methods for the Fire Dynamic Simulator modeling for railroad passenger trains. We should get the thermal inputs such as ignition temperature, conductivity, specific heat, vaporization heat, effective heat release. With the simple conduction model for cone-calorimeter test, they could get more than HRR. Kinds of methodology were introduced for better thermal data for real material.

  • PDF

Study on Characteristics of Heat Release Rate in Compartment of Building for Scenario of Smoke Management (건축물 제배연시나리오 작성을 위한 구획실 발열특성 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.398-403
    • /
    • 2009
  • The theoretical bases on characteristics of heat release rate in compartment of building for scenario of smoke management are introduced and the numerical applications to simple compartment model are carried out. The growth stage which is important for smoke management design is modelled as t-squared fire curve including fire growth coefficient with related to growth rate. The conditions for the happening of flashover is presented such as $600^{\circ}C$ of temperature or $20kW/m^2$ of radiation heat flux. After the flashover happen, the fire in compartment changes to fully developed fire having the characteristics of ventilation-controlled fire. As the result of numerical analysis to simple compartment model, the time to reach 900K under ceiling for condition of medium growth is twice for condition of fast growth.

  • PDF

Public Safety & Security Unmanned Aerial Vehicle Heat resistance Environmental Test used in case of Building Fire (건축물 화재발생시 사용되는 재난치안용 무인기의 내열성 환경시험)

  • Kim, Da-Kyung;Bang, Hong-Soon;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.119-120
    • /
    • 2020
  • Recently, a building fire has occurred due to various influences. Accordingly, we are developing an public safety & security unmanned aerial vehicle for fire prevention and initial response to fire. The public safety & security unmanned aerial vehicle is used to grasp the traffic route to enter the fire engine in the event of a fire in a dense structure and to determine the scale of the fire and the area of danger of collapse around the fire site. In this study, an environmental test of the public safety & security unmanned aerial vehicle's heat resistance was performed in an environment simulating a fire scene.

  • PDF

Measurement of Heat Release Rate in Fires (화재에서의 열발생율 측정)

  • Han, Yong-Sik;Kim, Myeong-Bae;Choe, Jun-Seok
    • 연구논문집
    • /
    • s.29
    • /
    • pp.49-55
    • /
    • 1999
  • Heat release rate used to characterize the fire is an important factor for determining the fire size, the fire growth and the time for suppression and evacuation. The purpose of present work is to review theoretical backgrounds and to introduce equations for estimation of heat release rate with oxygen consumption method in fires. Our work also shows the experimental results of applications for liquid fuels. The oxygen concentration is measured by the analyzer of paramagnetic type. The analyzers of Infra-Red type are used to measure the concentrations of $CO_2$ and CO gas. Time delays of analyzers are ignored.

  • PDF