• Title/Summary/Keyword: Fire Extinguishing

Search Result 391, Processing Time 0.026 seconds

Introduction of Fire Protection Technology and Its Design Method of Offshore Facilities (해양플랜트의 방화대책 및 설계기술 소개)

  • Koo, Myeong Jun;Choi, Jae Woong;Yoon, Ho Byung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The dimensioning accidental loads have been selected through suitable quantitative risk assessment and generally utilized important factors for offshore facility design. The fire hazard can be quantified with dimensioning fire loads. The main purposes of fire protection are to maintain the functionality of safety systems within evacuation period and to prevent the escalation from initial fire to uncontrolled catastrophic fire. This paper introduces the applications and the design methods of active and passive fire protections as representative measures of fire protection of offshore facilities. The passive fire protection requires the high initial installation cost and much difficulty on the operation of facilities and their maintenance. The oil major clients have asked the design contractors of offshore facilities to optimize the amount of passive fire protection with relevant engineering technology recently.

A Study on a PCB Manufacturing Plant's Fire Risk Assessment due to the Mitigation of Fire Protection Zone and an Improvement Way through Estimation of Sprinkler Demand Water Flow Rate (방화구획 완화에 따른 PCB공장의 화재위험평가 및 스프링클러 요구살수유량 산정을 통한 기준개선안에 관한 연구)

  • Oh, Chan-Wook;Oh, Ryun-Seok;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.56-62
    • /
    • 2019
  • A sprinkler is a fire extinguishing equipment installed in a protected area where a detector or head detects a fire and automatically puts out the fire. However, the Ministry of Land, Infrastructure and Transport's "Regulations on Building Evacuation and Fire Protection Standards, etc." stipulate that fire compartment area should be reduced to three times by installing sprinkler facilities in the case of factories and warehouses. In this study, fire hazard was analyzed for a real PCB factory which mitigated the fire protection zone by sprinkler installation, and the head opening characteristics of sprinkler facilities through computer simulation, installation standards of sprinkler facilities, thermal performance, operating range, and the amount of water sprayed to identify the problems of operation of sprinkler facilities in case of fire, and to suggest the grounds such as required sprinkling flow rate for system improvement.

Study on the effective response method to reduce combustible metal fire (금속화재 위험감소 방안에 관한 이론적 연구)

  • Nam, Ki-Hun;Lee, Jun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.600-606
    • /
    • 2018
  • A class D fire or combustible metal fire is characterized by the presence of burning metals. Only certain metals or metal compounds are flammable, including sodium and lithium. General fire extinguishing agents, such as dry chemical powder, water-based fire extinguish agents, and carbon dioxide, cannot be used in class D fires. This is because these agents cause adverse reactions or are ineffective. In addition, the amount of usage of combustible metals is increasing due to continuous development of the semiconductor and fuel cell industries. Despite this, Korea does not have standards and laws related to combustible metal fires. This paper suggests directions of the class D fire management policies to reduce the class D fire risk and impact by analyzing the standards and laws related to class D fires and combustible metal fire cases. The factors to make laws on class D fire prevention and response systems, and management system of dry sand were determined. These results may be used to help reduce the risk of class D fires and improve the response abilities.

A study on the location of fire fighting appliances in cargo ships (화물선 소화설비 비치에 대한 연구)

  • Ha, Weon-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.852-858
    • /
    • 2016
  • To safeguard the accommodation spaces on cargo ships from fire, structural fire protection provisions introduced by SOLAS and these measures retard the propagation of flames and smoke. SOLAS also specifies provisions for fire fighting drills. These provisions are a combination of regulations regarding structure and equipment and those dealing with the human element for the fire protection and effective responses in the event of fire. Requirements related to the human element play a supporting role to the requirements for structure and equipment because the present accommodation structure and equipment are insufficient for extinguishing a fire, therefore, fire-extinguishing activity performed by crew members is essential. To reduce human error and ensure effective fire fighting, it is necessary to install a fire-fighting system and improve the fire fighting process. The fundamental concept of fire fighting exercises is to commence fire fighting before the fire grows too big to extinguish. It is essential to relocate the storage place of fire fighting equipment to expedite the fire-fighting exercise. This study was carried out to reduce human risk for this purpose, the fire control station was relocated to a site that could be accessed from the open deck. Further, two sets of a fire fighter's outfit were stored at the same site. This relocation eliminated the risk of the crew reentering to operate the fire fighting system in the fire control station and allowed the crew to pick up the fire fighters' outfits quickly in the event of a fire. In addition, it was proposed that the IIC method be made mandatory. This method is combination of automatic fire detection system and sprinkler system which can reduce the risk of the fire fighting exercises for the crew and to suppress fire in the initial stage. This study was carried out to provide a foundation to the possible amendment of the relevant SOLAS regulations and national legislation.

An Experimental Study on the Comparison of Operating Temperatures in Thermal Detector due to Tunnel Fire (터널 화재 시 열감지기 작동 온도의 비교에 관한 실험적 연구)

  • Roh, Hyeong-Ki;Park, Kwang-Young;Im, Seok-Been
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • Due to the rapid development of construction technology with effective land utilization in this nation, many tunnels were and are being built across the country. However, the smoke and the heat generated from tunnel fire are the most important critical factors which may results in both massive personal injury and property damage, especially, due to the closed surrounding of the tunnel. Considering this particular nature of the tunnels, this study aims to install a fire detection system using an optic fiber cable to measure the temperature changes, compare, and analyze the resulted values with the times of temperature changes of the sensor by performing fire simulations under the same condition as a real fire test. From the results, it has been found that the temperature sensor detects a fire occurrence and generates an alarm within one minute after ignition for both a real fire test and a fire simulation alike, and also that the characteristics of temperature changes of the sensor has close relations with the speeds of the currents inside the tunnel. In addition, considering the tunnel fires can affect the evacuation efficiency and the fire extinguishing activities of the fire brigade inside the tunnel, the temperature sensor must be able to search and find the locations and directions of the fires correctly.

A Study on the Application of Fire Protection Facilities in Large Enclosure Gymnasium (대규모 실내경기장의 소방방재설비 적용현황 분석)

  • Choi, Dong-Ho;Kim, Choon-Dong;Yang, Jeong-Hoon;Cho, Young-Hum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.135-145
    • /
    • 2010
  • The objective of this study is to draw basic data for the application of the fire protection planning for the future plan large enclosure buildings in Korea through an analysis of its characteristics by case studies of the domestic and foreign large scale gymnasiums. In this study, domestic building codes for the fire protection are investigated and fire detection systems, fire extinguishing systems, smoke control systems and evacuation systems of three large scale gymnasiums located at Korea and eight foreign countries are compared and analyzed. The results of this study show that infrared light fire detection system and flame detector for spacial characteristics are potentially used in fire protection systems of large scale gymnasiums: dry type sprinkler and sprinkler water gun are adopted in fire detection system; and smoke accumulation system is widely utilized in smoke control system.

  • PDF

Direction of Fire Safety Development through Analysis of Previous Firefighting-Related Research (소방분야 선행연구 분석을 통한 소방안전 발전방향)

  • Jeong, Mu Heon;Lee, Sun Jai;Park, In-Seon
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.103-108
    • /
    • 2019
  • The purpose of this study is to suggest the development direction of fire safety through the analysis of previous researches in the field of fire fighting. To this end, 929 papers published in the Journal of Korean Institute of Fire Science and Engineering have been sorted by field of study and analyzed for frequency. Accordingly, it was confirmed that researches were conducted in the order of fire chemistry and physics, detection and extinguishing system, fire safety design and management, evacuation and human behavior. In contrast, very little research has been conducted on human behavior, fire safety education, or training. This result is discussed in the article, and suggestions for future research objectives are made.

Statistical Analysis and Countermeasure about Fire Mistaken Dispatch (통계적 분석을 통한 화재 오인출동의 현황과 대책)

  • Eom, Sang-Yong;Kim, Kyoung-Jin;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2013
  • In this research, the fire mistaken dispatch records for the past 11 years have been analyzed by using a statistic technique. Fire mistaken dispatch occurred yearly average $48,371{\pm}5,763$ time at 95 % confidence level. This is 1.2 times more than the dispatch for extinguishing the fire. Fire mistaken dispatch has been increased mainly by malfunctioning alarm among other various reasons and the reason of mistaken dispatch is different depending on the population of the region. In big cities, the burning smell accounts for the most of mistaken dispatch but in rural areas, the garbage incineration is the major reason for mistaken dispatch. As a result of calculating the mean time between fire mistaken dispatches (MTBFmd) by region, MTBFmd of Daejeon is 20.61 hr/time and its reliability is 95.26 % at t=1 hr. On the other hand, the MTBFmd of Gyeonggi is 0.58 hr/time and its reliability is 17.91 % at t=1 hr.

A Study on Fire Dynamics Simulation on the Arrangement of Aero System in the Residential (주거공간 에어로 시스템 배치에 관한 화재시뮬레이션 연구)

  • Choi, Doo Chan;Ko, Min Hyeok;Lee, Doo Hee;Park, Kye Won;Choi, Jeong Min;Lee, Yong Kwon;Kim, Gil Nam;Sun, Kyoung Soo
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.890-896
    • /
    • 2021
  • Purpose: The called Aero System is important to find the well detected place in the livingroom or bedroom so, it needs to the confirmation through the Fire Dynamics Simulation Method: A fire simulation of a residential space of 59 m2 was performed, and in order to find the point where the fire environment was exposed quickly, measuring points were installed at 0.6 m and 1.5 m in height for each bedroom and living room, and the point where the fire was quickly detected was confirmed. Result: It was confirmed that the temperature and carbon monoxide sensor set at a point of 1.5 m was quickly detected at the reference value. Conclusion: The Fire detection would be relatively quick if the product in which the fire extinguishing module and the AQI module were separated was installed on the wall.