• Title/Summary/Keyword: Fire Dynamic Simulation

Search Result 69, Processing Time 0.03 seconds

Simulation analysis for evacuation safety countermeasure in underground facilities (지하공간시설에서의 피난안전대책을 위한 시뮬레이션 해석)

  • Kim, Bong-Chan;Kim, Se-Jong;Kim, Gyeong-Gu;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.100-105
    • /
    • 2011
  • 본 연구에서는 재실자의 밀도가 높은 지하상가는 공간의 특성상 화재가 발생할 경우 다량의 유독가스의 발생 및 연기의 이동경로와 인간의 피난경로 일치로 인하여 피난안전에 큰 위험성이 있다고 사료된다. 이에 지하철 역사와 연결되어 있는 지하상가를 선정 후, 일본 피난안전성평가수법과 FDS(Fire Dynamic Simulator) 및 SIMULEX를 이용하여 비교 분석을 하였으며, 그 결과, 화재발생 후 6분이 경과 시 위험한 것으로 판단되었다. 그에 대한 대책으로 자연 배연구를 설치하여 시뮬레이션 수행을 한 결과 가시도확보 및 각 출구에서의 온도가 하강하는 것을 확인할 수 있었다.

  • PDF

A study on safety evaluation by changing smoke ventilation mode in subway tunnels (지하철터널 환기변환모드에 따른 안전성 평가에 관한 연구)

  • Rie, Dong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.389-400
    • /
    • 2003
  • In order to recommend the mechanical smoke exhaust operation mode, Subway Environmental Simulation (SES) is used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire Dynamic Simulation (FDS) is used the SES's velocity boundary conditions to clarity the smoke exhaust effectiveness by the variations with mechnical ventilation system. We compared each 6 types of smoke exhaust systems for the result of smoke density and temperature distributions for 1.5m height from the subway station base in order to clarify the safety evaluation for the heat and smoke exhaust on subway fire.

  • PDF

Interactive VFX System for TV Virtual Studio (TV 가상 스튜디오용 인터랙티브 VFX 시스템)

  • Byun, Hae Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.21-27
    • /
    • 2015
  • In this paper, we presents visual effect(water, fire, smoke) simulation and interaction system for TV virtual studio. TV virtual studio seamlessly synthesizes CG background and a live performer standing on a TV green studio. Previous virtual studios focus on the registration of CG background and a performer in real world. In contrast to the previous systems, we can afford to make new types of TV scenes more easily by simulating interactive visual effects according to a performer. This requires the extraction of the performer motion to be transformed 3D vector field and simulate fluids by applying the vector field to Navier Stokes equation. To add realism to water VFX simulation and interaction, we also simulate the dynamic behavior of splashing fluids on the water surface. To provide real-time recording of TV programs, real-time VFX simulation and interaction is presented through a GPU programming. Experimental results show this system can be used practically for realizing water, fire, smoke VFX simulation and the dynamic behavior simulation of fish flocks inside ocean.

A Study on Grid Size and Generation Method for Fire Simulations for Ship Accommodation Areas (선박 거주구역 화재시뮬레이션을 위한 격자크기와 생성방법에 관한 연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.791-800
    • /
    • 2017
  • For fires in ship accommodation areas, if it is possible to predict the pattern in which fire will spread and suggest proper countermeasures according to a situation using a fire simulation tool, fire damage may be reduced. However, fire simulations have a practical limit: a significant amount of time is required to analyze the results due to the size of the computational domain and the number of grids. Therefore, in this study, applicable grid size for fire simulations to predict fire patterns in ship accommodation areas was analyzed, and a generation method was conducted to predict fire behavior in real time. As a result, a value within 0.25[m] was judged appropriate as an applicable grid size for ship accommodation areas. Also, in comparison with studies using a single mesh generation method, the visibility value was similar, within 4.3 %, as was the temperature value, within 8.3 %, when a multi mesh generation method was used, showing a decline of 80 % in analysis time. Therefore, it was confirmed that composing a grid using multi mesh was effective for reducing analysis time.

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part II: Multi-dimensional Fire Dynamics) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향 (Part II: 다차원 화재거동))

  • Kim, Jong-Hyun;Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.32-38
    • /
    • 2010
  • Multi-dimensional fire dynamics were studied numerically with the change in ventilation conditions in a full-scale ISO 9705 room. Fire Dynamic Simulator (FDS) was used for the identical conditions conducted in previous experiments. Flow rate and doorway width were changed to create over-ventilated fire (OVF) and under-ventilated fire (UVF). From the numerical simulation, it was found that the internal flow pattern rotated in the opposite direction for the UVF relative to the OVF so that a portion of products recirculated to the inside of compartment. Significant change in flow pattern with ventilation conditions may affect changes in the complex process of CO and soot formation inside the compartment due to increase in the residence time of high-temperature products. The fire behavior in the UVF created complex 3D characteristics of species distribution as well as thermal and flow structures. In particular, additional burning near the side wall inside the compartment significantly affected the flow pattern and CO production. The distribution of CO inside the compartment was explained with 3D $O_2$ distribution and flow patterns. It was observed that gas sampling at local positions in the upper layer were insufficient to completely characterize the internal structure of the compartment fire.

Development of a Software to Evaluate the CPES(Cable Penetration Fire Stop) System in Nuclear Power Plane I (원자력발전소 케이블관통부 충전시스템 평가용 소프트웨어 개발 I)

  • 윤종필;권성필;조재규;윤인섭
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. Here was carried out an experiment to observe the heat transfer in the cable penetration fire stop system made of DOW CORNING products. The dynamic heat transfer occurring in the fire stop system is formulated in a parabolic partial differential equation subjected to a set of initial and boundary conditions. And it was modeled, simulated, and analyzed. The simulation results were illustrated in three-dimensional graphics and were compared with experimental data. Through the simulations, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable streams. It also was found that the dynamic heat transfer through the cable streams was one of the most dominant factors, and the feature of heat conduction could be understood as an unsteady-state process. It is certain that these numerical results are useful for making a performance-based design for the cable penetration fire stop system.

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

Stabilization of elevation for gunner primary sight using variable structure control (가변구조제어에 의한 조준경 고각 안정화)

  • 김중완;이정규;김주상;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.643-647
    • /
    • 1990
  • Gunner primary sight(GPS) stabilization system lays line of sight(LOS) to find out a target and transmits informations to the fire control system (FCS). In a moving vehicle, accuracy of LOS and FCS depends on the design of GPS and servomechanism system. The heavy vibration of vehicle on the severe off-road environment degenerates the stabilization capability of GPS. In this study, to stabilize of elevation for GPS using the variable structure control, we derived the dynamic equation of GPS system and designed the variable structure controller. Computer simulation results fulfilled the static and dynamic stability of GPS using the variable structure control.

  • PDF

A Study on the Chemical Warfare Agents Dispersion Modelling in a Naturally Ventilated Indoor System (자연환기상태 실내공간에서의 화학작용제 확산 모델링 연구)

  • Kye, Young-Sik;Chung, Woo-Young;Kim, Yong-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.133-140
    • /
    • 2008
  • The purpose of this study is to provide response methods to minimize the damage from chemical terrorism in a naturally ventilated indoor system using several types of dispersion simulations. Three chemical warfare agents such as sarin(GB), phosgene and chlorine gas which have high potential to be used in terror or to be involved with accidents were selected in this simulation. Fire dynamic simulation based on Large Eddy Simulation which is effective because of less computational effort and detailed expression of the dispersion flow was adopted to describe the dispersion behavior of these agents. When the vent speed is 0.005m/s, the heights of 0.1 agent mass fraction are 0.9m for sarin, 1.0m for phosgene and 1.1m for chlorine gas, and the maximum mass fraction are 0.27 for all three agents. However, when the vent speed is increased to 0.05m/s, the heights of 0.1 agent mass fraction become 1.6m for all three agents and maximum mass fraction inside the room increase to 0.70 for sarin, 0.58 for phosgene and 0.53 for chlorine gas. It is shown that molecular weight of the agents has an important role for dispersion, and it is important to install ventilation system with height less than 1.6m to minimize the damage from chemical toxicity.

Simulation of Wood Crib Burning Behaviors by Using FDS (FDS를 이용한 소화모형 화재거동의 시뮬레이션)

  • Kwon, Seong-Pil;Yoon, Hun-Ju;Kim, Hyeong-Gweon;Ra, Yong-Woon;SaKong, Seong-Ho;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.76-79
    • /
    • 2008
  • In this work wood crib burning behaviors have been simulated by using the FDS(Fire Dynamic Simulator) program. Wood cribs are regularly stacked arrays of wood sticks, and available for the performance rating of fire-extinguishers. On the basis of an angle iron supporter 26 layers of wood sticks have been stacked up. Each layer consists of 5 or 6 wood sticks which are placed in parallel, with a constant distance, and in alternating rows. They are laid between the horizontally adjacent sticks at the before last layer. The wood crib is ignited instantaneously by an amount of burning gasoline below. A comprehensive simulation of such a practical sophisticated combustion is still too difficult to realize with any currently available computer, although the performance of modern processors is getting better everyday. We could carry it out here through parallel computing on the HPC(High Performance Computing) cluster as the feasible alternative. At last the validation has been executed by means of temperature distribution data measured by the thermal video camera.

  • PDF