• Title/Summary/Keyword: Fire Accident

Search Result 697, Processing Time 0.025 seconds

Development of Accident Taxonomy for Experimental Laboratory (연구실 사고분류 체계 개발)

  • Park, Kyoshik
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.49-53
    • /
    • 2016
  • The goal of this study is to analyze accidents occurred at experimental laboratory and to suggest hierarchical taxonomy applicable to prepare countermeasures reducing the experimental laboratory accidents. Recent 5 years accidents were analyzed and classified according to their primary cause, facility or human. Then in case of facility, the accidents were further classified whether they can be fixed by organization or by individual. In case of human factor, they were classified into physical, chemical, or biological to prepare precise measures. Depending on the adequacy of appropriate practice, several measures were suggested such as; whether to improve training of laboratory workers, or to improve training the system, or to improve or prepare practice substantially. A new taxonomy for laboratory accident was suggested complying other governmental agencies' classification such as KOSHA and KGS. Additionally, two kinds of possibilities were suggested such as possibility of major accident and possibility of disaster which can be defined as laboratory accident causing large scale of harmful consequence to residential area or environment by fire, explosion and/or toxic release of hazardous chemicals and/or microbiology.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.

Development Direction of Fire Consequence Analysis Programs for Hazardous Materials (위험물 취급설비 화재 사고결과 영향평가 프로그램 개발 방향)

  • 유재환;김용수;이영순;이경봉;이성우;박달재
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 1999
  • In this paper, We have analyzed the application characteristics of the three different consequence programs(SuperChems Pro., PHAST Pro., and SAFER Trace) for the models (pool fire, jet fire & flare, fireball, flash fire) based on the four possible accident scenarios. And we have proposed a development direction of fire consequence analysis models using the related theories and the results analysis of consequence programs.

  • PDF

A study on the fire safety evaluation of the urban rail vehicle (Fire characteristic evaluation of interiors) (도시철도차량 화재안전도 평가에 대한연구(I) (내장재 화재특성 평가 중심으로))

  • Jung, Woo-Sung;Lee, Duck-Hee;Lee, Cheul-Kyu;Lee, Ju-Bong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.202-206
    • /
    • 2006
  • Although the urban rail vehicle is exposed to the fire disaster, most country, except only a few advanced country, is insufficient to take a measure against the fire accident. Safety regulation modification, fire safety standard of the materials. and each material's fire resistance of the rail vehicle have been upgraded until the Daegu fire disaster in Korea. For that reason, In this study, current techniques of fire safety evaluation are analyzed and fire safety degrees of rail vehicles are compared with the change of interiors which is met to the fire safety standard of urban rail vehicle.

  • PDF

A Clinical Study of Art Therapy for Children Who Witnessed a Tragic Accident (충격적 사고를 목격한 아동에 대한 미술치료 사례)

  • Kim, Sun-Hyun;Chang, Young-Yoon;Kim, Boong-Nyeun;Kwon, Bok-Ja;Jang, Eun-Hee
    • Journal of the Korean Society of School Health
    • /
    • v.23 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Purpose: This study aims to examine what can be seen in children's paintings, their common characteristics, and what role art therapy plays in diagnosing the post-traumatic stress disorder in children who experienced trauma, through an art therapy program among elementary school students that witnessed the death of parents from a fire drill accident. Methods: A program of three times of art therapy was progressed among 34 children who witnessed a fire accident. Revised Children's Manifest Anxiety Scale (RCMAS) was used for comparative analysis of art therapy results. Results and Conclusion: First, children who had the possibility to develop post-traumatic stress disorder were found through art therapy. Second, an opportunity to express themselves were given to children who refused psychological tests or treatment through art therapy.

AUTOMATION OF QUANTITATIVE SAFETY EVALUATION IN CHEMICAL PROCESSES

  • Lee, Byung-Woo;Kang, Byoung-Gwan;Suh, Jung-Chul;Yoon, En-Sup
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.252-259
    • /
    • 1997
  • A method to automate hazard analysis of chemical plants is proposed in this paper. The proposed system is composed of three knowledge bases - unit knowledge base, organizational knowledge base and material knowledge base, and three hazard analysis algorithms - deviation, malfunction and accident analysis algorithm. Hazard analysis inference procedure is developed based on the actual hazard analysis procedures and accident development sequence. The proposed algorithm can perform hazard analysis in two methods and represent all conceivable types of accidents using accident analysis algorithm. In addition, it provides intermediate steps in the accident propagation, and enables the analysis result to give a useful information to hazard assessment. The proposed method is successfully demonstrated by being applied to diammonium phosphate manufacturing process. A system to automate hazard analysis is developed by using the suggested method. The developed system is expected to be useful in finding the propagation path of a fault or the cause of a malfunction as it is capable to approach causes of faults and malfunctions simultaneously.

  • PDF

소방용 설비.기기 등의 동결방지 대책(1)

  • Lee, Bok-Yeong
    • Fire Protection Technology
    • /
    • s.11
    • /
    • pp.31-39
    • /
    • 1991
  • As the Present industry is developing, a structure and systems is tending increase. Therefore, the accident of freezing become intensified in our country, the continental climate zone of region in the middle degree. This paper is to analyze about the reason of freezing, principles to help avoid freeze, and so forth.

  • PDF

A new element elimination model to predict fire-induced damage on an underground structure (요소제거기법을 적용한 지하구조물의 화재손상 예측모델 개발)

  • Chang, Soo-Ho;Choi, Soon-Wook;Bae, Gyu-Jin;Ahn, Sung-Youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.313-327
    • /
    • 2008
  • Thermo-mechanical coupled behavior of an underground structure during a fire accident have not been fully understood yet. Moreover, when such a thermo-mechanical coupled behavior is not considered in numerical analyses based on conventional heat transfer theory, fire-induced damage zone in an underground structure can be considerably underestimated. This study aims to develop a FEM-based numerical technique to simulate the thermo-mechanical coupled behavior of an underground structure in a fire accident. Especially, an element elimination model is newly proposed to simulate fire-induced structural loss together with a convective boundary condition. In the proposed model, an element where the maximum temperature calculated from heat transfer analysis is over a prescribed critical temperature is eliminated. Then, the proposed numerical technique is verified by comparing numerical results with experimental results from real fire model tests. From a series of parametric studies, the key parameters such as critical temperature, element size and temperature-dependent convection coefficients are optimized for the RABT and the RWS fire scenarios.

  • PDF