• Title/Summary/Keyword: Finite-element

Search Result 22,323, Processing Time 0.04 seconds

Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior (비선형 거동을 하는 비좌굴가새의 유한요소모델 검증)

  • Kim, Dae-Hong;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.

FINITE ELEMENT METHOD FOR SOLVING BOUNDARY CONTROL PROBLEM GOVERNED BY ELLIPTIC VARIATIONAL INEQUALITIES WITH AN INFINITE NUMBER OF VARIABLES

  • Ghada Ebrahim Mostafa
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.613-622
    • /
    • 2023
  • In this paper, finite element method is applied to solve boundary control problem governed by elliptic variational inequality with an infinite number of variables. First, we introduce some important features of the finite element method, boundary control problem governed by elliptic variational inequalities with an infinite number of variables in the case of the control and observation are on the boundary is introduced. We prove the existence of the solution by using the augmented Lagrangian multipliers method. A triangular type finite element method is used.

Computer Simulation of Upsetter Forging Processes that uses Finite Volume Method (유한체적법을 이용한 업셋터 단조공정의 컴퓨터 시뮬레이션)

  • Kim, H.T.;Park, S.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.170-175
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method for simulation of upsetter forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

  • PDF

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Finite Element Analysis and Experiments of Milli-Part Forming of Strip Bending Using Grain Element (입자요소계를 이용한 유한요소 해석)

  • Ku T.W.;Kim D.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.266-273
    • /
    • 2002
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The bending of these components of thin sheets has a typical phenomenon of bulk deformation because of the forming size. The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. The conceptual miniature bending process enables the production of such parts with high productivity and accuracy. The stress values of the flow curve decrease with miniaturization, which means that coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this paper, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure of strip in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

  • PDF

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.

Techniques of Automatic Finite Element Mesh Generation on Surface Primitives (원시곡면 위의 유한요소망 자동생성 기법)

  • 이재영
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.189-202
    • /
    • 1996
  • Complex geometric shapes can be defined simply and efficiently by combining and operating various surface primitives. These primitives and their intersection curves are used in finite element mesh generation to form an easy and intuitive procedure for finite element modelling of curved surfaces. This paper proposes techniques of automatic mesh generation on surface primitives with arbitrarily shaped boundaries and control curves, which may be created by surface to surface intersection. A method of automatic mesh generation on plane, which was previously developed by the author, has been modified for application to the surface mesh generation. Owing to the mesh generation-wise differences between planes and surfaces, the surfaces should be transformed into conceptual plane so that the modified plane mesh generation method can be applied. Surface development, mapping and mesh reconstruction are the key techniques suggested in this paper. The selection of the technique to apply can be determined automatically on the basis of the developability, existence of singularity and other characteristics of the surfaces on which the mesh is to be generated. The suggested techniques were implemented into parts of mesh generation functions of the finite element software, MacTran. Their validity and practicality were manifested by the actual use of this software.

  • PDF

Active vibration control: considering effect of electric field on coefficients of PZT patches

  • Sharma, Sukesha;Vig, Renu;Kumar, Navin
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1091-1105
    • /
    • 2015
  • Piezoelectric coefficient and dielectric constant of PZT-5H vary with electric field. In this work, variations of these coefficients with electric field are included in finite element modelling of a cantilevered plate instrumented with piezoelectric patches. Finite element model is reduced using modal truncation and then converted into state-space. First three modal displacements and velocities are estimated using Kalman observer. Negative first modal velocity feedback is used to control the vibrations of the smart plate. Three cases are considered v.i.z case 1: in which variation of piezoelectric coefficient and dielectric constant with electric field is not considered in finite element model and not considered in Kalman observer, case 2: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model and not considered in Kalman observer and case 3: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model as well as in Kalman observer. Simulation results show that appreciable amount of change would appear if variation of piezoelectric coefficient and dielectric constant with r.m.s. value of electric field is considered.

Choice of Thresholding Technique in Micro-CT Images of Trabecular Bone Does Not Influence the Prediction of Bone Volume Fraction and Apparent Modulus

  • Kim, Chi-Hyun;Kim, Byung-Gwan;Guo, X. Edward
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.174-177
    • /
    • 2007
  • Trabecular bone can be accurately represented using image-based finite element modeling and analysis of these bone models is widely used to predict their mechanical properties. However, the choice of thresholding technique, a necessary step in converting grayscale images to finite element models which can thus significantly influence the structure of the resulting finite element model, is often overlooked. Therefore, we investigated the effects of thresholding techniques on micro-computed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to micro-CT images of trabecular bone which resulted in three unique finite element models for each specimen. Bone volume fractions and apparent moduli were predicted for each model and compared to experimental results. Our findings suggest that predictions of apparent properties agree well with experimental measurements regardless of the choice of thresholding technique in micro CT images of trabecular bone.

Finite element stress analysis on supporting bone by tripodal placement of implant fixture (유한요소법을 이용한 임플란트 고정체의 삼각배열에 따른 지지골의 응력 분석)

  • Son, Sung-Sik;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • Purpose: This study was to propose the clear understanding for stress distribution of supporting bone by use of staggered buccal offset tripodal placement of fixtures of posterior 3 crown implant partial dentures. We realized posterior 3 crown implant fixed partial dentures through finite element modeling and analysed stress effect of implant arrangement location to supporting bone under external load using finite element method. Method: To understand stress distribution of 3 crown implant fixed partial dentures which have 2 different arrangement by finite element analysis. In each model, for loading condition, we applied $45^{\circ}$ oblique load to occlusal surface of crown and applied 100 N for 3 crown individually(total 300 N) for imitating possible oral loading condition. at this time, we calculated Von Mises stress distribution in supporting bone through finite element method. Result: When apply $45^{\circ}$ oblique load to in-line arrangement model, maximum stress result for 100 N for each 3 crown 47.566MPa. In tripodal placement, result for 1mm buccal offset tripodal placement implant model was maximum distributed load 51.418MPa, so result was higher than in-line arrangement model. Conclusion: In stress distribution result by placement of implant fixture, the most effective structure was in-line arrangement. The tripodal placement does not effective for stress distribution, gap cause more damage to supporting bone.

  • PDF