본 논문은 전자파장해 및 복사 내성 측정에 사용되는 전자파 무반사실의 대용 방법으로 사용되는 전자파 잔향실 내의 필드 균일성에 관한 연구이다. 최근 Wireless LAN 이나 DMB 및 휴대 인터넷 사용량의 증가로 인해 전자기파 노이즈가 다른 기기나 장비에 악영향을 미칠 것으로 예상되는 2.3 GHz 대역에 초점을 맞추었다. 본 논문에서는 전자파 잔향실 내부의 전계강도 수치해석을 위하여 시간영역 유한 차분법이 사용되었으며, 전자파 잔향실의 특성과 내부 전계강도의 균일성 개선을 위하여 2D CRD의 배치와 개수를 변화시키면서 표준 편차, 공차 특성, 편파 특성을 비교분석하였다. 전자파 잔향실의 두 면에 확산기를 부착하였을 때 확산기를 사용하지 않은 전자파 잔향실에 비하여 표준 편차는 1.98 dB, 공차 특성은 3.6 dB 만큼 개선되었다.
We design a crisscrossed double-layer birdcage (DLBC) coil by modifying the coil geometry of a standard single-layer BC (SLBC) coil to enhance the homogeneity of transmitting magnetic flux density ($B_1{^+}$) along the main magnetic field ($B_0$)-direction for small-animal magnetic resonance imaging (MRI) at 300 MHz. The performance assessment of the crisscrossed DLBC coil is conducted by computational analysis with the finite-difference time domain method (FDTD) and compared with SLBC coil in terms of the $B_1$ and the $B_1{^+}$ distribution. As per the computational calculation studies, the mean value in the two-dimensional $B_1{^+}$ map obtained at the mid-axial slice with the proposed DLBC coil is slightly lower than that obtained with the SLBC coil, but the $B_1{^+}$ value of the DLBC coil in the outermost plane (40 mm away from the central plane) shows improvements of 19.3% and 24.8% over the SLBC coil $B_1{^+}$ value when simulating a spherical phantom and realistic mouse body modeling. These simulation results indicate that, the $B_1{^+}$ homogeneity along the z-direction was improved by using DLBC configuration. Our approach enables $B_1{^+}$ homogeneity improvement along the zdirection, and it can also be applied to ultra-high field (UHF) MRI systems.
We have investigated the optical properties of plamonic waveguide with tapered structure based on InP material for photonic integrated circuit(PIC). The proposed plasmonic waveguide is covered with the Ag thin film to generate the plasmonic wave on metallic interface. The optical characteristics of plasmonic waveguide were calculated using the three-dimensional finite-difference time-domain method. The plasmonic waveguide was fabricated with the lengths of 2 to $10{\mu}m$ and the widths of 400 to 700 nm, respectively. The plasmonic mode and optical loss were measured. The optimum plasmonic length is $10{\mu}m$ and widths are 600 and 700 nm in the fabricated waveguide. This plasmonic waveguide can be directly integrated with other conventional optical devices and can be essential building blocks of PIC.
In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.
In this paper, metal insulator metal (MIM) plasmonic slot cavity narrow band-pass filters (NBPFs) are studied. The metal and dielectric of the structures are silver (Ag) and air, respectively. To improve the quality factor and attenuation range, two novel NBPFs based on tapered structures and double cavity systems are proposed and numerically analyzed by using the two-dimensional (2-D) finite difference time domain (FDTD) method. The impact of different parameters on the transmission spectrum is scrutinized. We have shown that increasing the cavities' lengths increases the resonance wavelength in a linear relationship, and also increases the quality factor, and simultaneously the attenuation of the wave transmitted through the cavities. Furthermore, increasing the slope of tapers of the input and output waveguides decreases attenuation of the wave transmitted through the waveguide, but simultaneously decreases the quality factor, hence there should be a trade-off between loss and quality factor. However, the idea of adding tapers to the waveguides' discontinuities of the simple structure helps us to improve the device total performance, such as quality factor for the single cavity and attenuation range for the double cavity. According to the proposed NBPFs, two, three, and four-port power splitters functioning at 1320 nm and novel ultra-compact two-wavelength and triple-wavelength demultiplexers in the range of 1300-1550 nm are proposed and the impacts of different parameters on their performances are numerically investigated. The idea of using tapered waveguides at the structure discontinuities facilitates the design of ultra-compact demultiplexers and splitters.
최근 지하공간에 대한 개발이 활발히 진행됨에 따라 지중 시설물의 정보에 대한 중요도가 증가하고 있다. 굴착작업을 수행하기 전에 지중 시설물의 위치를 정확히 파악해야 한다. 지표투과레이더(GPR)와 같은 지구물리적 탐사 방법은 지중 시설물을 조사하는데 유용하게 사용된다. GPR은 지반에 전자기파를 송출하며 지반과 다른 매질에 의해 반사되는 신호를 분석하여 지중시설물의 위치와 깊이 등을 파악한다. 그러나 GPR 데이터의 판독은 숙련된 전문가의 주관적 판단에 의존하기 때문에 이를 딥러닝을 통해 자동화하려는 많은 연구가 진행되고 있다. 딥러닝은 학습 데이터가 많을수록 정확한 모델을 만들 수 있으며, 이러한 학습데이터 축적에 있어 수치해석이 좋은 대안이 될 수 있다. 수치해석의 경우 지반의 불균질성을 모사하여 다양한 조건에서의 GPR 탐사 데이터를 생성할 수 있으며, 이를 이용하여 학습모델의 성능을 향상시킬 수 있을 것으로 생각된다. 지반은 불균질하며, GPR 신호는 지반의 다양한 변수로 인해 영향을 받는다. 그러나 이러한 불균질 지반에 대한 연구가 필요한 실정이다. 따라서 본 연구에서는 프랙탈 차원수와 지반의 함수비 범위에 따른 GPR탐사 신호특성을 분석하고 불균질한 지반을 모사하기 위한 입력파라미터에 대한 연구를 수행하였다. 프랙탈 차원수가 2.0을 넘어가면 적합곡선에 대한 오차가 크게 감소하는 것으로나타났다. 그리고 분석의 타당성을 확보하기 위해 함수율의 범위가 0.14 미만이어야 한다.
탐사 지구물리학에서 수치 모사는 지하매질에서의 탄성파 전파 현상을 이해하는데 중요한 통찰력을 제공한다. 탄성파 모사는 음향파 근사에 의한 수치 모사보다 계산시간이 많이 소요되지만 전단응력 성분을 포함하여 보다 현실적인 파동의 모사를 가능하게 한다. 그러므로 탄성파 모사는 탄성체의 반응을 탐사하는데 적합하다고 할 수 있다. 계산 시간이 길다는 단점을 극복하기 위해 본 논문에서는 그래픽 프로세서(GPU)를 이용하여 탄성파 수치 모사 시간을 단축하고자 하였다. GPU는 많은 수의 프로세서와 광대역 메모리를 갖고 있기 때문에 병렬화된 계산 아카텍쳐에서 사용할 수 있는 장점이 있다. 본 연구에서 사용한 GPU 하드웨어는 NVIDIA Tesla C1060으로 240개의 프로세서로 구성되어 있으며 102 GB/s의 메모리 대역폭을 갖고 있다. NVIDIA에서 개발된 병렬계산 아카텍쳐인 CUDA를 사용할 수 있음에도 불구하고 계산효율을 상당히 향상시키기 위해서는 GPU 장치의 여러 가지 다양한 메모리의 사용과 계산 순서를 최적화해야만 한다. 본 연구에서는 GPU 시스템에서 시간영역 유한차분법을 이용하여 2차원과 3차원 탄성과 전파를 수치 모사하였다. 파동전파 모사에 가장 널리 사용되는 유한차분법 중의 하나인 엇갈린 격자기법을 채택하였다. 엇갈린 격자법은 지구물리학 분야에서 수치 모델링을 위해 사용하기에 충분한 정확도를 갖고 있는 것으로 알려져 있다. 본 논문에서 제안한 모델링기법은 자료 접근 시간을 단축하기 위해 GPU 장치를 메모리 사용을 최적화하여 가능한 더 빠른 메모리를 사용한다. 이점이 GPU를 이용한 계산의 핵심 요소이다. 하나의 GPU 장치를 사용하고 메모리 사용을 최적화함으로써 단일 CPU를 이용할 경우보다 2차원 모사에서는 14배 이상, 3차원에서는 6배 이상 계산시간을 단축할 수 있었다. 세 개의 GPU를 사용한 경우에는 3차원 모사에서 계산효율을 10배 향상시킬 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.