• Title/Summary/Keyword: Finite-Element-Method

Search Result 13,420, Processing Time 0.04 seconds

A Study of Tire Curing Bladder shaping by Using Finite Element Method (유한요소법을 이용한 타이머 Curing Bladder Shaping엔 관한 연구)

  • 김천식;김항우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.3-3
    • /
    • 1992
  • 타이어 Curing공정은 공기압 타이어의 제조시 상당히 정교한 단계를 거쳐서 이루어지며, 이는 타이어 설계에 큰 영향을 줄 뿐만아니라, 타이어의 성능에도 관건이 있다. 본 연구에서는 유한요소법을 이용하여 타이어의 molding 공정을 분석하였다. 유한요소해석 프로그램인 MARC가 Cured 타이어 내부의 Curing Bladder 팽창과정해석에 이용되었다. 비압축성 요소로 Curing Bladder를 모형화하였으며, MARC의 접촉문제해석기법(contact option)을 이용하여 Cured 타이어 내부와 Curing Bladder 외부의 접촉부위를 Simulation하였다. 본 연구의 주요 관심내용으로서는 Curing Bladder의 형상변화에 따른 Curing Bladder의 팽창거동해석과, Cured타이어와 Curing Bladder의 접촉부위에서 얻을 수 있는 접촉압력의 비교.검토이다. 타이어 Curing시 타이어와 Bladder의 Contact과정을 해석하여, 아래와 같은 결과를 도출하였다. Bladder의 형상은 Cylinderical 형상 보다는 Toroidal 형태가 접촉압 분포의 균일성 및 크기 측면에 서 우수한 것으로 판단된다. Curing Bladder의 증심선 부위 보다 이에서 약간 떨어진 부위에서 최대 접촉압력이 발생되며, 이는 타이어 내면의 굴곡현상과 깊은 관련이 있윰 것으로 사료된다. 타이어 Bead부의 Carcass 자연평형현상이 유지된 제품을 얻기위해서는, Side-Bead구간의 접촉압력 증가가 필요하며, 이를 위하여는 Bladder 형상이 Cylinderical 보다는 Toroidal 형태가 유리하고, Bead부의 Gage Down, 전체직경의 증가 및 높이의 증가가 유리한 것으로 판단된다. 본 연구 결과를 이용하여, 타이어 Curing과정에서 발생되는 불량제품의 원인파악 및 타이어 설계자가 원하는 제품생산의 불가능한 원인을 파악하는데 도움을 줄 것이다.를 C의 structure와 pointer를 기반으로 하게끔 변경시키고 이에 따르는 제반 변경 사항을 수정 보완하여 프로그램의 분석을 용이하게 하며 기능의 변경 및 추가가 수월하게 하였고 메모리를 동적으로 관리할 수 있게 하였다. 또한 기존의 smpl에 디버깅용 함수 및 설비(facility) 제어용 함수를 추가하여 시뮬레이션 프로그램 작성을 용이하게 하였다. 예를 들면 who_server(), who_queue(), pop_Q(), push_Q(), pop_server(), push_server(), we(), wf(), printfct() 같은 함수들이다. 또한 동시에 발생되는 사건들의 순서를 조종하기 위해, 동시에 발생할 수 있는 각각의 사건에 우선순위를 두어 이 우선 순위에 의하여 사건 리스트(event list)에서 자동적으로 사건들의 순서가 결정되도록 확장하였으며, 설비 제어방식에 있어서도 FIFO, LIFO, 우선 순위 방식등을 선택할 수 있도록 확장하였다. SIMPLE는 자료구조 및 프로그램이 공개되어 있으므로 프로그래머가 원하는 기능을 쉽게 추가할 수 있는 장점도 있다. 아울러 SMPLE에서 새로이 추가된 자료구조와 함수 및 설비제어 방식등을 활용하여 실제 중형급 시스템에 대한 시뮬레이션 구현과 시스템 분석의 예를 보인다._3$", chain segment, with the activation energy of carriers from the shallow trap with 0.4[eV], in he amorphous regions.의 증발산율은 우기의 기상자료를 이용하여 구한 결과 0.05 - 0.10 mm/hr 의 범위로서 이로 인한 강우손실량은 큰 의미가 없음을 알았다.재발이 나타난 3례의 환자를 제외한 9례 (75%)에서는 현재까지 재발소견을 보이지 않고 있다. 이러한 결과는 다른 보고자들과 유사한 결과를 보이고 있지만 아직까지 증례가 많지 않기 때문에 생존율을 얻

  • PDF

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.

Damage Study on the Mechanical Fastening in Laminated Composites (복합적층판(復合積層板)의 기계적(機械的) 체결부(締結部)에 관한 파손연구(破損硏究))

  • Kwan-Hyung,Song
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.58-66
    • /
    • 1990
  • A series of test was performed measuring the failure strength and failure mode of Gr/Pi, $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate containing a single pin loaded hole. The finite element method is applied to calculate the stress distribution in the laminates, then the failure load and the failure mode were predicted by means of the characteristic length. 12 different geometric variations were developed to analyze the effects of the ratio of specimen width to hole diameter (W/d) and ratio of edge distance to hole diameter (L/d). X-Ray of NDE methods were utilized in finding out the initial defects, damage and the fracture mechanism, and SEM(Scanning Electron Microscopes) was used the evaluation of the fracture mechanism and crack propagation around hole under tension pin loading. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate are found to be most sensitive to W/d but not so influenced by L/d. The failure mode and tensile strength predicted by the model show agreement with experiment data for pin loading bolted jointed test except range of $L/d{\leqq}3$.

  • PDF

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

An equivalent model for the seismic analysis of high-rise shear wall apartments (고층 벽식 아파트의 지진해석을 위한 등가모델)

  • Kim, Tae-Wan;Park, Yong-Koo;Kim, Hyun-Jung;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.11-21
    • /
    • 2007
  • Currently in the country, the necessity of seismic analyses is increasing due to the increase of demand and interest in seismic design. Especially, shear wall apartments are constructed mostly for a residental building so seismic analyses for the apartment are actively executed. For the seismic analysis of the shear wall apartment, it may be not efficient in time and effort to model the entire structure by a finite element mesh. Therefore, an equivalent model is needed to simulate the dynamic behavior of the structure by decreasing the number of degrees of freedom. In this study, a method to form an equivalent model that is simple and easy to use was proposed utilizing effective mass coefficient that is highly correlated to mode shape of the structure. This equivalent model was obtained by replacing a shear wall structure with an equivalent frame structure having beams and columns. This model can be used very effectively when excessive seismic analyses are necessary in a short period because it can be operated in any commercial program and reduce the analysis time. Also, it can model floor slabs so it can represent the actual behavior of shear wall apartments. Furthermore, it is very excellent since it can represent the asymmetry of the structure.

Static Analysis of Actual Bridges for Application of Thin Polymer Concrete Deck Pavements (폴리머 콘크리트 박막 교면포장 적용을 위한 실제 교량 정적 해석)

  • Jeong, Young Do;Kim, Jun Hyung;Lee, Suck Hong;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.421-431
    • /
    • 2011
  • In this paper, actual bridges constructed with SMA (Stone Mastic Asphalt) deck pavement and virtual bridges substituted the deck pavement with polymer concrete under the same conditions were statically analyzed to investigate applicability of the thin polymer concrete bridge deck pavements. PSC (prestressed Concrete) girder bridge, steel box girder bridge, PSC box girder bridge, and RC (Reinforced Concrete) rahmen bridge constructed with the SMA deck pavement were analyzed and compared to evaluate various types of the bridge. The bridge deck and pavement were assumed to be fully bonded and the stress and deformation during the construction were ignored while those due to pavement weight and vehicle loading were analyzed. According to the analysis results, the stress and deformation of the bridges using the polymer concrete due to the pavement weight were smaller than those using the SMA because of smaller self weight due to lighter unit weight and thinner thickness of the pavement. The stress and deformation of the bridges using the polymer concrete due to the vehicle loading were larger than those using the SMA because of the smaller area moment of inertia due to the thinner pavement thickness. In case that the pavement weight and vehicle loading applied simultaneously, the stress and deformation of the bridges using the polymer concrete were smaller because effect of self weight reduction was more dominant. Investigation of performance of the bridge deck pavement and analysis of economical efficiency are warranted.

Stress Analysis of the Corner Part of Ship Structures Using the New Equivalent Curved Beam Theory (신(新) 등가(等價) 곡선(曲線)보 이론(理論)에 의한 선체(船體) Corner부(部)의 응력(應力) 해석(解析))

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.193-201
    • /
    • 1992
  • A new equivalent curved beam theory is developed for the analysis of the corner part of ship structures, in which effects of distributed loads and asymmetricity with two or three connected parts are considered. Equivalent loads are obtained from equilibrium conditions between the distributed loads and the member forces and moments at the ends of curved beam. And an equivalent curved beam for the asymmetric structure is obtained by superposing the equivalent symmetric parts which have equivalent stiffness. From the sample calculation, it is found that the results of the new equivalent curved beam theory are well agreed with those of finite element method using membrane elements with little computing time and sufficient accuracy.

  • PDF

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.