• Title/Summary/Keyword: Finite substrate

Search Result 246, Processing Time 0.019 seconds

Radiation Characteristics of a Probe-Fed Microstrip Patch Antenna on a Finite Grounded High Permittivity Substrate

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1738-1745
    • /
    • 2015
  • Radiation characteristics of a probe-fed rectangular microstrip patch antenna printed on a finite grounded high permittivity substrate are investigated systematically for various square grounded dielectric substrate sizes with several thicknesses and dielectric constants by experiment and full wave simulation. The effect of the substrate size on the radiation characteristics of a rectangular patch antenna is mainly determined by the effective dielectric constant of surface waves on a grounded dielectric substrate. As the effective dielectric constant of surface waves increases, the substrate sizes for the maximum broadside gain and the required onset for a large magnitude of squint angle decrease, while the variations of the broadside gain, the front-to-back ratio, and the magnitude of squint angle versus the substrate size increase due to the increase of the power of the surface wave.

Effect of a Finite Square Substrate Plane on the Radiation Characteristics of a Microstrip Patch Antenna (유한한 정사각형 기판의 크기가 마이크로스트립 패치 안테나의 방사 특성에 미치는 영향)

  • Park, Jae-Woo;Kim, Tae-Young;Kim, Boo-Gyoun;Shin, Jong-Dug
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.114-125
    • /
    • 2009
  • Effect of a finite square substrate plane on the radiation characteristics of a microstrip patch antenna is investigated. Effect of a finite square substrate plane on the resonance frequency and bandwidth is very small, while that on the radiation pattern is very large. The gain of front radiation and the direction of the maximum gain vary almost periodically with the length of a square substrate plane. The length of a square substrate plane for the maximum gam and the minimum gain of front radiation decrease as the electrical thickness of a substrate increases. The variation of the gain of front radiation with the length of a square substrate plane increases as the electrical thickness of a substrate increases. The variation of the radiation pattern with the length of a square substrate plane is almost determined by the electrical thickness of a substrate.

Effect of Finite Substrate Plane on the Radiation Characteristics of Microstrip Patch Antennas (기판의 크기가 마이크로스트립 패치 안테나의 방사특성에 미치는 효과)

  • Kim, Sang-Woo;Kim, Tae-Young;Kim, Boo-Gyoun;Shin, Jong-Dug;Kim, Se-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.33-41
    • /
    • 2007
  • Effect of finite substrate plane on the radiation characteristics of microstrip patch antennas is investigated. The variation of the characteristics of the radiation pattern due to the change of the length of a substrate is much larger than that due to the change of the width of a substrate. As the thickness of a substrate increases, the characteristics of the radiation pattern reveal more sensitive for the change of the size of a substrate.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas Positioned along the E-plane (유한한 기판 크기가 E-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.26-34
    • /
    • 2010
  • The mutual coupling of a pair of microstrip patch antennas on a finite grounded dielectric substrate is influenced by the diffracted field of surface waves from the edges of a substrate. The effective dielectric constant of a grounded dielectric substrate determines the distance between the antenna center and the edge of a substrate to obtain the minimum mutual coupling between a pair of microstrip patch antennas. The optimum substrate size with the minimum mutual coupling is easily calculated using the image method. The optimum substrate sizes using the linage method are in good agreement with the results obtained by the full wave simulation.

Study on Thermal behavior of Flexible CIGS Thin Film Solar Cell on Fe-Ni Alloy Substrates using Finite Element Analysis (유한요소해석을 이용한 CIGS 박막 태양전지용 Fe-Ni 합금 기판재 열적 거동 연구)

  • Han, Yun-Ho;Lee, Min-Su;Kim, Dong-Hwan;Yim, Tai-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • What causes the transformation of a solar cell is the behavior difference of thermal expansion occurred between the substrate and the layer of semiconductor used in the solar cell. Therefore, the substrate has to possess a behavior of thermal expansion that is similar with that of semiconductor layer. This study employed electroforming to manufacture Fe-Ni alloy materials of different compositions. To verify the result from a finite element analysis, a two-dimensional Mo substrate was calculated and its verification experiment was conducted. The absolute values from the finite element analysis of Mo/substrate structure and its verification experiment showed a difference. However, the size of residual stress of individual substrate compositions had a similar tendency. Two-dimensional CIGS/Mo/$SiO_2$/substrate was modeled. Looking into the residual stress of CIGS layer occurred while the temperature declined from $550^{\circ}C$ to room temperature, the smallest residual stress was found with the use of Fe-52 wt%Ni substrate material.

Radiation Characteristics of Microstrip Patch Antennas with a Finite Grounded Square Substrate (유한한 정사각형 기판을 가지는 마이크로스트립 패치 안테나의 방사 특성)

  • Kim, Tae-Young;Park, Jea-Woo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.118-127
    • /
    • 2009
  • Effect of a finite square substrate plane on the radiation characteristics of a microstrip patch antenna is investigated. Excellent agreements between the simulation and measured results on the radiation characteristics of patch antennas for various square substrate thicknesses and sizes are obtained. The effect of a square substrate plane on the resonant frequency and bandwidth is small, while that on the radiation pattern is large. As the substrate thickness increases, the variations of the gain of the broadside radiation, the direction of the maximum radiation, and the radiation pattern increase for the variation of a substrate size. The maximum gain difference between the broadside radiation and back radiation and the large gain of broadside radiation are obtained when the length of a side of a square substrate plane is $0.8\;{\lambda}_0$.

Effect of Finite Substrate Size on the Radiation Characteristics of H-plane Linear Array Antennas (유한한 기판 크기가 H-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-49
    • /
    • 2013
  • The effect of the finite substrate size on the radiation characteristics of H-plane linear microstrip array antennas is investigated. The radiation characteristics versus scan angle are systematically analyzed for 5-element H-plane linear array antennas with various substrate sizes and element spacings for the substrates with different dielectric constants. The distance between the antenna center and the substrate edge on the E-plane for the enhancement of the radiation characteristics of the array antenna is presented.

Effect of a Finite Substrate on the Radiation Characteristics of a Linear Phased Array Antenna Positioned along the E-plane (유한한 기판 크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The effect of a finite substrate on the radiation characteristics of a linear 7-element array antenna positioned along the E-plane is investigated. Active reflection coefficients and average active element patterns are simulated for various substrate sizes. The E-plane radiation pattern of a fully excited array for various scan angles is correlated with the active reflection coefficient and average acitive element pattern. The effect of E-plane substrate size on the radiation characteristics of a linear array along the E-plane is larger than that of H-plane substarte size.

Evaluation of Brinell Hardness of Coated Surface by Finite Element Analysis: Part 2 - Influence of Substrate and Coating Thickness (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제2보 - 모재와 코팅두께의 영향)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.144-150
    • /
    • 2021
  • The most cost-effective method of reducing abrasive wear in mechanical parts is increasing their hardness with thin hard coatings. In practice, the composite hardness of the coated substrate is more important than that of the substrate or coating. After full unloading of the load applied to an indenter, its indentation hardness evaluated based on the dent created on the test piece was almost dependent on plastic deformation of the substrate. Following the first part of this study, which proposes a new Brinell hardness test method for a coated surface, the remainder of the study is focused on practical application of the method. Indentation analyses of a rigid sphere and elastic-perfect plastic materials were performed using finite element analysis software. The maximum principal stress and plastic strain distributions as well as the dent shapes according to the substrate yield stress and coating thickness were compared. The substrate yield stress had a significant effect on the dent size, which in turn determines the Brinell hardness. In particular, plastic deformation of the substrate produced dents regardless of the state of the coating layer. The hardness increase by coating behaved differently depending on the substrate yield stress, coating thickness, and indentation load. These results are expected to be useful when evaluating the composite hardness values of various coated friction surfaces.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas along the H-plane (유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Gun-Su;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, the effect of a finite substrate on the mutual coupling of a pair of microstrip patch antennas along the H -plane is investigated. The mutual coupling of a pair of microstrip patch antennas can be reduced using the interference effect due to the phase difference by a variety of routes of the surface wave. In the case of the substrate with $\varepsilon_r$=10 and thickness of 3.2 mm, the mutual coupling is reduced by 4.85 dB on the substrate size with the strong mutual coupling, while the mutual coupling is reduced by 34.28 dB on the substrate size with the weak mutual coupling when the distance between the antenna centers is varied from 0.5 $\lambda_0$ to 1.0 $\lambda_0$. In the case of optimization substrate size, the decreasing rate of the mutual coupling with the increase of the distance between the antenna centers is very large. Good agreements between the image method and full wave simulation results are obtained.