• 제목/요약/키워드: Finite element meshes

검색결과 193건 처리시간 0.024초

이단계 번호 부여 방법과 선단집합 이용방법을 결합한 밴드폭 감소 알고리즘 개발 (Development of a Bandwidth Reduction Algorithm by Combining the Two-Step Approach and the Frontal Ordering Scheme)

  • 이병채;구본웅
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.19-27
    • /
    • 1991
  • 본 연구에서는 그래프 이론에 기초한 이단계 번호 부여 방법에 목표밴드폭을 도입하여 계산시간이 짧으면서도 효율적으로 번호를 부여할 수 있는 방법을 제안하고 자 한다.

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

가상 변형률을 갖는 비적합 4절점 축대칭 요소 (Incompatible finite Elements for Axisymmetric Structure with Assumed Strains)

  • 주상백;신효철
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.486-494
    • /
    • 1995
  • This paper introduces two kinds of new four-node quadrilateral axisymmetric elements with independently-assumed strains. They are formulated by the modified Hellinger-Reissner principle so as to employ incompatible displacements and assumed strains. In one of the present elements, the strains from incompatible displacements are corrected to pass the constant strain patch test. The other contains incompatible functions that are obtained from the element boundary condition. The elements are evaluated on the several problems of bending and material incompressibility with regular and distorted meshes. The results show that the new element performs excellently in deformation and stress calculation.

임의의 성형조건을 갖는 박판의 평면변형율 해석 (Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions)

  • 금영탁;이승열
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템 (Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory)

  • 이준성;이양창;최윤종
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Numerical simulation for a passing ship and a moored barge alongside quay

  • Nam, B.W.;Park, J.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.566-582
    • /
    • 2018
  • A moored barge alongside quay can be influenced by a nearby passing ship and its ship-generated waves. In this study, a time-domain numerical method based on a three-dimensional potential flow solver is developed to investigate the passing ship problem with a moored barge alongside quay. Potential flows around the passing ship and the moored barge alongside a quay is directly solved by using a classical finite element method. Total computational meshes including a passing ship, a moored barge and a quay is updated at each step with an efficient re-mesh algorithm. To validate the developed numerical method, a conventional ship wave problem and a passing ship problem on the open sea has been solved and the solutions are compared with the existing data. Then, a series of numerical computations were carried out to investigate the passing ship effect on a moored barge alongside quay. The characteristics of the passing ship effects are studied with varying the simulation parameters such as passing ship speed, separation distance, wall distances and waves. Focus is made on hydrodynamic forces due to the passing ship effect and its ship waves.

Evaluation of Internal Resistance in Asphalt Concretes

  • Zandi, Yousef;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.247-250
    • /
    • 2012
  • Composites are somewhat more difficult to model than an isotropic material such as iron or steel due to the fact that each layer may have different orthotropic material properties. In finite element literature the asphalt mixes are represented by using rectangular meshes, not the actual picture of their cross-sections. Asphalt aggregate size and distribution in the asphalt concrete sample, aggregate shape, and fractured surface effects are ignored. In this research, the actual image of the sample including all these effects were directly considered in the finite element. The samples, were cut into cross-sections and were scanned. The image-processing toolbox of Labview was utilized in obtaining the rectangular gray images of the scanned images. In the rectangular sample the aggregates were white and the asphalt binders were black. The grayscale images were converted by LABVIEW into the format required by ANSYS as an input file, with the same dimensions. The nodes at the bottom of the model were constrained in both x and y directions. Left and right edges were symmetry and top was free. Certain amount of pressure was applied along the top surface to simulate the tire pressure.

닫힌 셀 구조 Al 발포 재료의 압축 거동에 대한 수치해석 (Numerical Analysis on the compressive behavior of closed-cell Al foam)

  • 전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1663-1666
    • /
    • 2007
  • The finite element method is applied to analyze the deformation mechanisms in the closed-cell Al foam under the compression. The modeling of the real cellular structure proceeds with the concept of the reverse engineering. First of all, the small, $10{\times}\;10{\times}\;10mm^3$ sized specimens of the closed-cell Al foam are prepared. The micro focus X-ray CTsystem of SHIMADZU Corp. is used to scan the full structures of the specimens. The scanned structures are converted to the geometric surfaces and solids through the software for 3-D scan data processing, RapidFormTMof INUS Tech. Inc. Then the solid meshes are directly generated on the converted geometric solids for the finite element analysis. The large elastic-plastic deformation and 3-D contact problems for the Al cellular material are considered. The clear and successful analysis for the deformation mechanisms in the closed-cell Al foam is carried out through the comparison of the numerical results in this research with the referred experimental ones.

  • PDF

Numerical study of 10-year-old child forearm injury

  • Mao, Haojie;Cai, Yun;Yang, King H.
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.143-158
    • /
    • 2014
  • Forearm fractures in children are very common among all pediatric fractures. However, biomechanical investigations on the pediatric forearm are rather scarce, partially due to the complex anatomy, closely situated, interrelated structures, highly dynamic movement patterns, and lack of appropriate tools. The purpose of this study is to develop a computational tool for child forearm investigation and characterize the mechanical responses of a backward fall using the computational model. A three-dimensional 10-year-old child forearm finite element (FE) model, which includes the ulna, radius, carpal bones, metacarpals, phalanges, cartilages and ligaments, was developed. The high-quality hexahedral FE meshes were created using a multi-block approach to ensure computational accuracy. The material properties of the FE model were obtained by scaling reported adult experimental data. The design of computational experiments was performed to investigate material sensitivity and the effects of relevant parameters in backward fall. Numerical results provided a spectrum of child forearm responses with various effective masses and forearm angles. In addition, a conceptual L-shape wrist guard design was simulated and found to be able to reduce child distal radius fracture.

J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술 (J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front)

  • 최호승;이형일
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.