• Title/Summary/Keyword: Finite element impact analysis

Search Result 806, Processing Time 0.024 seconds

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF

A Study on the Lateral Pressure Effect for Ultimate Strength of Ship Platings (선체판부재의 최종강도에 대한 횡압력의 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Lee Kyung-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.583-591
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to bitter understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

A Study on Stamping of the Center Pillar (High-Strength Steel-780MPa) Using Finite Element Analysis (유한요소해석을 이용한 센터필러(고장력강-780MPa)의 스탬핑 공정 설계)

  • Bang, G.B.;Seong, H.S.;Kwak, H.S.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Center pillar, which is installed in the center of flank of car body, supports roof and door and ensures the safety of driver by reducing the damage of car body caused by impact. Recently, high-strength steel is widely used to manufacture the center pillar due to high stiffness and fuel efficiency. In this study, material properties of the high-strength steel, whose tensile strength is more than 780MPa, were obtained to produce the center pillar. Stamping was performed by considering the design parameters (blank holder force, press stroke, blank size and pad pressure) used in the actual filed. The drawbeads were included in the stamping process to reduce the amounts of wrinkling and spring back. Using the commercial software, Autoform R5.2 and Minitab, effects of design parameters of the stamping process upon spring back were analyzed and applied to the design process. The restriking process meets the target of under 0.5mm in the amount of spring back.

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Vibration characteristics and reduction of Diesel Power Plant(DPP) (육상용 중속 디젤엔진 발전기세트의 진동 특성 및 저감)

  • Kim, Won-Hyun;Jung, Kun-Hwa;Lee, Soo-Mok;Ryoo, Young-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.39-40
    • /
    • 2006
  • Diesel power plant(DPP) with the medium speed diesel engine is operated under the very severe condition in aspect of load and operating time as compared with the marine diesel generator set. So, minimized vibration level have to be insured for the more stable operation of engine and generator. The vibration of generator set mainly comes from the resonance between the rigid modes by resilient mount or distortion modes by structural stiffness and the excitation forces of engine. Then, avoidance of resonance with structural modification is generally well known. In this paper, the first order vibration in non-resonance range and local vibration modes were investigated by impact test, response/ODS(operational deflection shape) measurement and 3D finite element analysis for the additional reduction of vibration. The proposed countermeasures were actually applied and their final effects were verified through the in-situ measurement.

  • PDF

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • Kim Jin-Woo;Shin Jae-Chul;Kim Myung-Soo;Lee Jae-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.921-929
    • /
    • 2005
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot spots in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.