• Title/Summary/Keyword: Finite element elastic-plastic analysis

Search Result 468, Processing Time 0.026 seconds

An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis (분기좌굴이론의 탄소성 유한요소법에의 적용)

  • 김종봉;양동열;윤정환
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

Elastic Plastic Finite Element Calculation of Standard Fracture Toughness Specimens (표준 파괴인성시험편에 대한 탄소성 유한요소해석)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 1994
  • The purpose of this study is elastic plastic finite element analysis for standard fracture toughness specimens. The principles of elastic-plastic fracture mechanics are shortly summarized and the special requirements for computational tools are derived. Possibilities to model the crack tip singularities are mentioned. The relevant fracture parameters like J-Integral and COD and their correlation are evaluated from elastic plastic finite element calculations of standard fracture toughnes specimens. The size and form of the plastic zone are shown. The comparion between experiment and caculation is discussed as well as the application of the limit load analysis.

  • PDF

Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

A Study on the T-branch Forming with 3-D Finite Element Method (3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구)

  • 홍대훈;황두순;신동필;홍성인
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Stress analysis of the restraint test specimen (구속균열 시험편의 용접시 응력 해석)

  • Choi, Gwang;Lim, Sung-Woo
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.288-289
    • /
    • 2004
  • In this report, stress analysis of restraint specimen was done by numerical method (finite element method). Calculations were done by elastic-plastic analysis and thermo-elastic-plastic analysis. The results showed similarities for both cases, and by thermo-elastic-plastic analysis transient characteristics of welding could be found.

  • PDF

Elastic-Plastic Finite Element Analysis of TiN Thin Film (TiN 박막의 탄소성 유한요소해석)

  • 김정실;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.331-340
    • /
    • 2001
  • Elastic-Plasitc Finite element analysis is peformed about the TiN coated medium. The normal contact is simulated by a rigid asperity pressing the surface of an elastic-plastic half-surface. The case of a surface film stiffer than the substrate is considered, and general solutions for the subsurface stress and deformation fields are presented for several coating thickness. Additionally, the critical normal loads for deformation in the substrate and coating fracture are calculated when the yield of TiN film follows the Maximum Principal Stress Theory and Von Mises Theory. The results can be subsumed in failure maps for TiN thin film on steel.

  • PDF

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method (이종재료 금속조인트의 굽힘에 의한 잔류응력 해석)

  • Baek Tae-Hyun;Jung Girl;Park Tae-Geun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF