• Title/Summary/Keyword: Finite element analysis program

Search Result 1,792, Processing Time 0.026 seconds

Ultimate Behavior of High-Tension Bolted Joints Considering Plate Thickness and Bolt Size (판 두께와 볼트 크기를 고려한 고장력 볼트 이음부의 극한 거동)

  • Kim, Sung-Bo;Choi, Jong-Kyoung;Heo, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.515-524
    • /
    • 2008
  • The ultimate behavior of high-tension bolted joints with various plate thickness and bolt size is investigated using nonlinear F.E. analysis and experimental study. The relation with sliding load, bolt deformation, and failure modes are presented based on plate thickness and bolt size. Three kinds of the bolt diameter(M20, M22, M24) and five types of the steel plates (l2mm, 16mm, 20mm, 30mm, 40mm) are considered for the ultimate behavior of the bolted joints. The numerical model, constructed by commercial F.E. program, ABAQUS, of ultimate behavior of bolted joints is introduced and verified by experimental results. The force-displacement and force-axial strain relations are measured and compared with the results by 3D finite element analysis.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Optimal Design of Lightweight Frame for Heavy Flat-Bed Trailer by Using Taguchi Method (다구찌기법을 이용한 대형 평판트레일러 하부프레임 경량설계)

  • Kim, Jin-Gon;Yoon, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • For achieving economical fuel consumption, an increase in the load bearing capacity, and for environmental conservation, there is a constant demand for lightweight frames of commercial vehicles used in the transportation industry. In this study, a structural analysis of the frame of a heavy flat-bed trailer was performed to determine the optimal design of a new lightweight frame made of high-strength steel. To identify the key design parameters of the trailer frame, Taguchi's orthogonal array was used in the experiments. Using ANSYS, a commercial FEA program, the frame structure was optimized with respect to stress, deflection, and torsional stiffness by performing stress and vibration analyses. A physical model of the trailer was also built to verify the validity of the numerical analyses. Finally, an on-road fatigue test of the new lightweight frame made of the high-strength steel, ATOS80, was performed to confirm the durability of the new design.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

Analytical Study for Optimal Reinforcement Amount and Development of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재 개발 및 최적 보강량 산정을 위한 해석적 연구)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.136-145
    • /
    • 2013
  • Social interest in the seismic retrofit of the structure is growing massive earthquake that occurred recently. The brittle fracture of Non-seismically designed Columns lead to full collapse of the building. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly in recent years, fiber-reinforced method utilizing the advantages of the composite material are preferred. However, the reinforcement methods such as this, there is a drawback to induce physical damage to structures, and time consuming work space is large. IIn this study, FRP seismic reinforcement was developed using the Aluminum connector and the composite material (Glass Fiber Reinforced Polymer). Then, the optimum quantities of FRP seismic reinforcement was determined using a nonlinear finite element analysis program. Finally, the quantity decision process through the design and analysis of FRP reinforcement was suggested.

Design and Optimization of Vibration-resistant and Heat-insulating Support Structure of Fuel Cylinder for LNG Vehicles (차량용 LNG 연료 용기의 내진동 단열지지구조 설계 및 최적화)

  • Kwon, Hyun-Wook;Hwang, In-Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.6-11
    • /
    • 2014
  • To optimize the design of fuel cylinder for LNG vehicles, we introduced the design parameters of the inner and the outer tank of the vessel support structure by analyzing the structural characteristics of conventional design. We selected the inner and outer diameter of the hollow support bars and a dimension of the inner structure of the vessel among the design parameters for design optimization. In this study the temperature distribution and thermal stress of the support structure were evaluated by using the utility program as MSC/MARC. The evaluation criteria are first mode natural frequency, total transferred energy through support structure and thermal stress. The developed design satisfied the design criteria and it was made of prototype. The prototype was verified through three-dimensional vibration testing and thermal performance test.

Static Aanlysis of Curved box Girder Bridge with Variable Cross Section by Transfer Matrix Method (전달행렬법에 의한 변단면 곡선 상자형 거더교의 정적해석)

  • Kim, Yong-Hee;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.109-120
    • /
    • 2003
  • The state-of-art of curved box girder bridge with cross section design has advanced in various area. In these days, several analytical techniques for behaviors of curved box girder bridges cross section are available to engineers. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method. Therefore, this paper proposed the static analysis method of curved box bridge with cross section by transfer matrix method based on pure-torsional theory and the optimal span ratio/variable cross section ratio of 3 span continuous curved box girder bridge.

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.

Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA (유전자 알고리즘 PSGA를 이용한 복합재료 헬리콥터 블레이드 최적 구조설계)

  • Chang, Se Hoon;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.340-346
    • /
    • 2022
  • In this study, an optimal structural design of composite helicopter blades is performed using the genetic algorithm-based optimizer PSGA (Particle Swarm assisted Genetic Algorithm). The blade sections consist of the skin, spar, form, and balancing weight. The sectional geometries are generated using the B-spline curves while an opensource code Gmsh is used to discretize each material domain which is then analyzed by a finite element sectional analysis program Ksec2d. The HART II blade formed based on either C- or D-spar configuration is exploited to verify the cross-sectional design framework. A numerical simulation shows that each spar model reduces the blade mass by 7.39% and 6.65%, respectively, as compared with the baseline HART II blade case, while the shear center locations being remain close (within 5% chord) to the quarter chord line for both cases. The effectiveness of the present optimal structural design framework is demonstrated, which can readily be applied for the structural design of composite helicopter blades.