• Title/Summary/Keyword: Finite element (FE) analysis

Search Result 1,444, Processing Time 0.028 seconds

Energy Absorption Characteristics and Optimal Welding Space of Square Hat Type Thin-walled Tube (정사각 모자형 박판튜브의 에너지흡수특성 및 최적 용접간격)

  • Lee, Hyung-Yil;Kim, Bum-Joon;Han, Byoung-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2703-2714
    • /
    • 2002
  • In this work, energy absorption characteristics and optimal welding space of spot-welded square hat type tube are investigated via quasi-static crush experiments and finite element (FE) analyses. A FE model reflecting the crush characteristics is established based on the experimentally observed crush mechanisms of specimens with welding spaces (20, 30 & 45 mm) and (25,40 & 55 mm) respectively for two specimen widths (60, 75 mm). The established FE model is then applied to other crush models of widths (50, 60 & 75 mm) with various welding spaces (20, 25, 30, 40, 45, 55, 75, 150, 300 mm) respectively. We examine the energy absorption characteristics with respect to the welding space for each specimen width. The outcome suggests an optimal spot welding space of square hat type thin-walled tube. Energy absorption is also presented in terms of yield strength of base metal, specimen thickness, width, and mean crushing force of spot-welded square hat type thin-walled tube.

An Analytical Study on the Strength Behavior of Column-Foundation Connection with High Tension Bolts (고장력 볼트 기둥-기초 연결부의 강도특성에 관한 해석적 연구)

  • Hwang, Dong A;Hwang, Won Sup;Ham, Jun Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In order to suggest a reasonable design for the circular concrete filled tube steel column-foundation connection applying high-tension bolts, Overall structural behavior and characteristics according to various variables of column-foundation connection are numerically analyzed using a commercial FE analysis program, ABAQUS. To that goal, finite element analysis is conducted on the basis of the previous study replacing anchor bolts to high-tension bolts, and the analytical results are validated by comparison with experimental results. Also, the various variables(embedded depth and grade of anchor, and height and thickness of rib) involved in behavior of the column-foundation connection are selected through analyzing the current design criteria, and the characteristics of the column-foundation connection are compared and analyzed according to the various variables. In case of the anchor bolts, Applying the high-tension bolts is more advantage and securing the embedded depth beyond 0.5D is recommendable. In case of the rib, a minimum of 0.5D for rib's height and $0.4t_b$ for rib's thickness should be secured to develop the structural performance.

Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate (순환 굵은골재 치환율에 따른 철근콘크리트 보의 전단거동)

  • Kim, Sang-Woo;Jeong, Chan-Yu;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with recycled coarse aggregates. A total of six specimens with various replacement ratios of recycled coarse aggregates (0%, 50%, and 100%) and different amount of shear reinforcement were cast and tested in this study. A finite element analysis was performed to predict the shear behavior of the specimens with natural or recycled coarse aggregates. The FE analysis was performed using a two-dimensional nonlinear FE analysis program based on the disturbed stress field model (DSFM), which is an extension of the modified compression field theory (MCFT). Experimental results showed that the specimens with 50% and 100% replacement ratios of recycled coarse aggregates had the similar shear strength compared to the specimen with natural aggregates, regardless of the replacement ratios of recycled coarse aggregates and the amount of the shear reinforcement. Furthermore, the comparison between experimental and analytical results showed that the proposed numerical modeling methods and the analytical model, DSFM, can be successfully used to predict the shear behavior of reinforced concrete beams with recycled coarse aggregates.

Analysis of Ultimate Rockfall Energy Resistance of CFT Rock Shed Main Frame (CFT 피암터널 주구조체의 극한 낙석에너지 저항능력 분석)

  • Moon, Jiho;Lee, Juho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Rock sheds are a type of rockfall protection facility that is installed on the road near steep slopes, where large amount of rockfall is expected. Rock sheds are generally designed to resist approximately 200 kJ to 3,000 kJ of rockfall energy. In a previous study, a new type rock shed structure having a concrete-filled tube (CFT) main frame was proposed. By using CFT as the main frame in a rock shed, rapid construction is possible. Additionally, high load carrying capacity and ductility can be achieved. The behavior of the proposed rock shed structure was studied via elastic analysis with the equivalent static load of rockfall energy as in a previous study. However, it is necessary to investigate the behavior of the proposed rock shed in more detail with a full 3D finite element (FE) model considering realistic rockfall load. The FE model for the CFT rock shed main frame was developed first in this study. Then, the resistance of the CFT rock shed main frame Under ultimate rockfall energy was investigated.

EFFECT OF NUMBER OF IMPLANTS AND CANTILEVER DESIGN ON STRESS DISTRIBUTION IN THREE-UNIT FIXED PARTIAL DENTURES: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

  • Park, Ji-Hyun;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.290-297
    • /
    • 2008
  • STATEMENT OF PROBLEM: Implant-supported fixed cantilever prostheses are influenced by various biomechanical factors. The information that shows the effect of implant number and position of cantilever on stress in the supporting bone is limited. PURPOSE: The purpose of this study was to investigate the effect of implant number variation and the effect of 2 different cantilever types on stress distribution in the supporting bone, using 3-dimensional finite element analysis. MATERIAL AND METHODS: A 3-D FE model of a mandibular section of bone with a missing second premolar, first molar, and second molar was developed. $4.1{\times}10$ mm screw-type dental implant was selected. 4.0 mm height solid abutments were fixed over all implant fixtures. Type III gold alloy was selected for implant-supported fixed prostheses. For mesial cantilever test, model 1-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 1-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 1-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with mesial cantilever were simulated. And then, 155N oblique force was applied to the buccal cusp of second premolar. For distal cantilever test, model 2-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 2-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 2-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with distal cantilever were simulated. And then, 206N oblique force was applied to the buccal cusp of second premolar. The implant and superstructure were simulated in finite element software(Pro/Engineer wildfire 2.0). The stress values were observed with the maximum von Mises stresses. RESULTS: Among the models without a cantilever, model 1-1 and 2-1 which had three implants, showed lower stress than model 1-2 and 2-2 which had two implants. Although model 2-1 was applied with 206N, it showed lower stress than model 1-2 which was applied with 155N. In models that implant positions of models were same, the amount of applied occlusal load largely influenced the maximum von Mises stress. Model 1-1, 1-2 and 1-3, which were loaded with 155N, showed less stress than corresponding model 2-1, 2-2 and 2- 3 which were loaded with 206N. For the same number of implants, the existence of a cantilever induced the obvious increase of maximum stress. Model 1-3 and 2-3 which had a cantilever, showed much higher stress than the others which had no cantilever. In all models, the von Mises stresses were concentrated at the cortical bone around the cervical region of the implants. Meanwhile, in model 1-1, 1-2 and 1-3, which were loaded on second premolar position, the first premolar participated in stress distribution. First premolars of model 2-1, 2-2 and 2-3 did not participate in stress distribution. CONCLUSION: 1. The more implants supported, the less stress was induced, regardless of applied occlusal loads. 2. The maximum von Mises stress in the bone of the implant-supported three unit fixed dental prosthesis with a mesial cantilever was 1.38 times that with a central pontic. The maximum von Mises stress in the bone of the implant-supported three-unit fixed dental prosthesis with a distal cantilever was 1.59 times that with a central pontic. 3. A distal cantilever induced larger stress in the bone than a mesial cantilever. 4. A adjacent tooth which contacts implant-supported fixed prosthesis participated in the stress distribution.

Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process (Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합)

  • Ahn, Nam-Sik;Lee, Chan-Joo;Lee, Jung-Min;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.691-698
    • /
    • 2012
  • The joining of aluminum and HSS (high-strength steel) by the conventional clinching process is limited by the low formability of HSS. Defects in the clinching joint, such as necking of the upper sheet, cracks, and lack of interlocking, are produced by the different ductility properties of HSS and aluminum. In this study, we propose the hole clinching process for joining Al6061 and SPFC440, in which deformation of SPFC440 is avoided by drilling a hole in the SPFC440. The dimensions of the interlocking in the hole-clinched joint necessary to provide the required joint strength were determined. Based on the volume constant of the hole clinching process, the shapes of the tools were designed by finite element (FE)-analysis. A hole clinching experiment was performed to verify the proposed process. A cross-section of the joint showed good agreement with the results of the FE-analysis. The lap shear strength was found to be 2.56 kN, which is higher than required joint strength.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

Dynamic Characteristics on the CRDM of SMART Reactor (SMART 원자로 제어봉 구동 장치의 동특성해석)

  • Lee, Jang-Won;Cho, Sang-Soon;Kim, Dong-Ok;Park, Jin-Seok;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1105-1111
    • /
    • 2010
  • The Korea Atomic Energy Research Institutes has been developing the SMART (System integrated Modular Advanced ReacTor), an environment-friendly nuclear reactor for the generation of electricity and to perform desalination. SMART reactors can be exposed to various external and internal loads caused by seismic and coolant flows. The CRDM(control rod drive mechanism), one of structures of the SMART, is a component which is adjusting inserting amount of a control rod, controlling output of reactor power and in an emergency situation, inserting a control rod to stop the reactor. The purpose of this research is performing the analysis of dynamic characteristic to ensure safety and integrity of structure of CRDM. This paper presents two FE-models, 3-D solid model and simplified Beam model of the CRDM in the coolant, and then compared the results of the dynamic characteristic about the two FE-models using a commercial Finite Element tool, ABAQUS CAE V6.8 and ANSYS V12. Beam 4 and beam 188 of simplified-model were also compared each other. And simplified model is updated for accuracy compare to 3-D solid.

Numerical Approach for a Partial CFST Column using an Improved Bond-Slip Model (개선된 부착슬립 모델을 적용한 부분 CFST 기둥의 수치해석)

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, a numerical approach for evaluating the resisting capacity of a partial concrete-filled steel tube (CFST) column is introduced. By strengthening the plastic hinge part of a traditional reinforced concrete column with a steel tube, a partial CFST shows a similar bending moment capacity as that of a full CFST column but with reduced material cost. To conduct an elaborate numerical analysis of a partial CFST column, an improved bond-slip model is applied to a finite element (FE) model at the interface between the steel tube and in-filled concrete. This numerical model is verified through the results of a double curvature bending-compression test. A parametric study with the proposed numerical model is used to obtain the load moment interaction diagrams for evaluating the resisting capacity based on various dimensions. Finally, the required strengthening length is estimated for each degree of thickness of the steel tube, and the failure mechanism of the partial CFST column based on the dimensions of the steel tube are identified.

Numerical and Experimental Study on Mechanical Properties of Gelatin as Substitute for Brain Tissue (뇌 조직의 기계적 물성에 관한 젤라틴을 이용한 수치해석 및 실험적 연구)

  • Bahn, Yong;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The mechanical properties of living tissues have been major subjects of interest in biomechanics. In particular, the characteristics of very soft materials such as the brain have not been fully understood because experiments are often severely limited by ethical guidelines. There are increasing demands for studies on remote medical operations using robots. We conducted compression tests on brain-like specimens made of gelatin to find substitutes with the mechanical properties of brain tissues. Using a finite element analysis, we compared our experimental data with existing data on the brain in order to establish material models for brain tissues. We found that our substitute models for brain tissues effectively simulated their mechanical behaviors.