• Title/Summary/Keyword: Finite difference program

Search Result 254, Processing Time 0.028 seconds

A CHARACTERISTIC PLANETARY FEATURE IN CAUSTIC-CROSSING HIGH-MAGNIFICATION MICROLENSING EVENTS

  • Kim, Do-Eon;Han, Cheong-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.33-37
    • /
    • 2009
  • We propose a diagnostic that can resolve the planet/binary degeneracy of central perturbations in caustic-crossing high-magnification microlensing events. The diagnostic is based on the difference in the morphology of perturbation inside the central caustics induced by a planet and a wide-separation binary companion. We find that the contours of excess exhibit a concentric circular pattern around the caustic center for the binary-lensing case, while the contours are elongated or off-centered for the planetary case. This difference results in the distinctive features of the individual lens populations in the residual of the trough region between the two peaks of the caustic crossings, where the shape of the residual is symmetric for binary lensing while it tends to be asymmetric for planetary lensing. We determine the ranges of the planetary parameters for which the proposed diagnostic can be used. The diagnostic is complementary to previously proposed diagnostics in the sense that it is applicable to caustic-crossing events with small finite-source effect.

Effects of Earth-Tube Characteristics on the Soil-Air Heat Exchanger Performances (지중매설관의 특성이 토양 - 공기 열교환기 성능에 미치는 영향)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 1997
  • To optimize the design and operation of a soil- air heat exchanger system, the effects of variables characterizing system design and operation on the performance of the system were analyzed by a theoretical model which included the three-dimensional transient heat conduction equation. The solution of the theoretical model was acquired by a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation, in which the time discretization scheme was an implicit difference appoximation. The computer program was validated first by comparison of the results for different grid sizes. Air outlet temperature, energy gain, and heat exchange efficiency of the system were analyzed based upon the tube diameter, tube length, tube thickness, and tube thermal diffusivity.

  • PDF

A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method (유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Curing Induced Residual Stresses in Laminated Cylindrical Shells

  • Lee, Soo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • A viscoelastic finite element analysis is presented to investigate residual stresses occurred in a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that can describe stress relaxation during the cure is derived as a recursive formula which can be used conveniently for a numerical analysis. The finite element analysis program is developed on the basis of a 3-D degenerated shell element and the first order shear deformation theory, and is verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual stresses in the laminated shell during the cure is investigated by performing both the viscoelastic and linear elastic analyses considering thermal deformation and chemical shrinkage simultaneously. The results show that there is big difference between viscoelastic stresses and linear elastic stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.

  • PDF

A Study on Slide Way Deformation from High Frequency Heat Treatment by Finite Element Method (유한요소법을 이용한 고주파 열처리시 안내면 변형에 관한 연구)

  • 홍성오;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.57-64
    • /
    • 2002
  • Finite element program(ANSYS) estimated thermal deformation quantity in high frequency heat treatment process of a machine tool fred drive system slideway and apply deformation quantity in roughing process. Having processed the heat treatment minimizing methods of the quantity of deformation heat treatment process. Having done heat treatment with high frequency after taper processing with considering the existed heat treatment generating the quantity of deformation, existed quantity of deformation can be reduced down to 80%, consequently productivity and material saving can be achieved. When high frequency heat treatment finite element method estimated deformation quantity at difference temperature and time, it is progress at cost don and saved time.

A Structural Analysis System for Forging Die Sets Design, AFDEX/DIE (단조용 금형세트 설계용 구조해석 시스템 AFDEX/DIE)

  • 전만수;이민철;류찬호;조홍석
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In this paper, a general approach to structural analysis of forging die sets is presented and the related design system, AFDEX/DIE, is introduced. Structural analysis of die sets is conducted by the finite element method considering both contact problem and shrink fit. In the approach, amount of shrink fit is controlled by thermal load, i.e., temperature difference between die insert and shrink rings. The loading conditions are extracted automatically from the simulation results obtained by a rigie-thermoviscoplatic finite element method. Typical application examples are given, which show the applicability of the approach and the related program.

  • PDF

Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method (유한요소법을 이용한 축대칭 구조물의 비선형 거동해석)

  • 구영덕;민경탁
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

Lubrication Effect of Slider Bearing with Round Embossed Surface According to Its Slider Slope (둥근 엠보싱 형상이 있는 슬라이더 베어링의 경사도에 따른 윤활효과)

  • Chin, DoHun;Yoon, MoonChul
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.284-290
    • /
    • 2014
  • The influence of round embossed surface on slider bearing characteristics and its load carrying capacity is discussed for thin film effect of embossed slider bearing. For the numerical computation of lubrication parameters such as pressure, load capacity and shear stress that are normalized and a Reynolds equation is used for the analysis of embossed slider bearing characteristics. For this purpose, the finite difference method of central difference scheme is used in this study. In a slider bearing with embossed form, several simulation parameters such as pressure, load capacity and shear stress of the bearing can be obtained according to independent parameters such as the slope of the slider bearing and number of embossing in the upper slider. Also this results can be summarized and be stored in sequential data file for latter analysis. After all, their distribution of the pressure and shear stress parameters can be displayed and be analyzed easily by using the developed program with matlab GUI technique. The independent parameters such as a number of embossing and a slope of the embossed surface slider are used for discussing simulation parameters of pressure distribution, shear stress and load carrying capacity of the round embossing. These study results reported in this paper should be applied to the other shaped slider bearing with a rectangular embossed surface or rectangular waved surface.

TWO DIMENSIONAL NUMERICAL SIMULATION PROGRAM FOR HYDROGENATED AMORPHOUS SILICON THIN FILM TRANSISTORS

  • Choi, Jong-S.;Neudeck, Gerold W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.252-257
    • /
    • 1994
  • A non-uniform finite-difference Thin Film Transistor Simulation Program (TFTSP) has been developed for hydrogenated amorphous silicon TFTs. TFTSP was developed to remove as many of simplifying assumptions as possible and to provide flexibility in the modeling of TFTs so that different model assumptions may be analyzed and compared. In order to insure its usefulness and versatility as an analytic and design tool it is important for the code to satisfy a number of conditions. However, at the beginning stage of the program development, this paper shows that the code can compute the static terminal characteristics of a-Si:H TFTs under a wide range of bias conditions to allow for comparison of the model with experiment. Some of those comparisons include transfer characteristics and I-V characteristics. TFTSP will be refined to conveniently model the performances of TFTs of different designs and to analyze many anomalous behaviors and factors of a-Si:H TFTs.

  • PDF