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Abstract

A non-uniform finite-difference Thin Film
Transistor Simulation Program (TFTSP) has been
developed for hydrogenated amorphous silicon TFTs.
TFTSP was developed to remove as many of simplifying
assumptions as possible and to provide flexibility in the
modeling of TFTs so that different model assumptions
may be analyzed and compared. In order to insure its
usefulness and versatility as an analytic and design too! it
is important for the code to satisfy a number of
conditions. However, at the beginning stage of the
program development, this paper shows that the code can
compute the static terminal characteristics of a-Si:H TFTs
under a wide range of bias conditions to allow for
comparison of the model with experiment. Some of those
comparisons include transfer characteristics and 1-V
characteristics. TFTSP will be refined to conveniently
model the performances of TFTs of different designs and
to analyze many anomalous behaviors and factors of a-
Si:H TFTs.

I. Introduction

Hydrogenated Amorphous Silicon (a-Si:H) Thin
Film Transistors (TFTs) have been under research for the
past thirty years, but it is only in the last decade that an
explosive growth has occured in this field. Advances
made in office automation and consumer electronics have
stimulated increasing research activities directed at the
development of a new generation input/output devices.

Although a-Si:H TFT has been under intensive study in

U.S.A.

the last decade, there is much room both for further
understanding of the fundamental device physics and for
improvement of device technologies. At this stage of
development of a-Si:H TFTs, two-dimensional (2-D)
device simulation becomes very helpful in that it would
help explain the various experimental results and also to
get insight of the device physics. Based on the 2-D
simulation results, further improvement of the existing
structure and the possible design of new TFT structure
can then be made.

Recently, several 2-D computer simulations for a-
Si:H TFTs [1},[2],[3] have been reported. However,
many simplifying assumptions were made in these models
which may have limited the accuracy of their results. A 2-
D computer simulation code, Thin Film Transistor
Simulation Program (TFTSP) for a-Si:H TFTs, was
developed to remove as many of these simplifying
assumptions as possible and to provide flexibility in the
modeling of TFTs so that different model assumptions
may be analyzed and compared. Because the physical
parameters describing a-Si:H are not well known, TFTSP

was developed to allow considerable flexibility in the

choice of these parameters so that the implications of these

choices can be fully investigated.

II. The Steady-State Equations for a-Si:H

a-Si:H can be modeled by assuming that the bands

- possess mobility edges which can be treated as a

conduction band edge (E) and as a valence band edge

(Ey), defining a mobility gap. Electrons higher in energy

than Ec and holes lower in energy than Ey are treated as

mobile carriers. This argument allows a-Si:H devices to
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be modeled by the usual set of drift-diffusion equations.
However, when modeling amorphous silicon devices, it
is very important to account for the high concentration of
trapped charge in the continuous distribution of localized
states in the mobility gap. Electrons and holes in the band
tails and the dangling-bond defect states do not contribute
to the conduction process at room temperature. Electrons
trapped by localized states dominate the potential
distribution in the active a-Si region and thus influence the
performance of a-Si devices. Thus, the situation is
considerablely more complicated than the one encountered
when modeling crystalline semiconductor devices in
which discrete energies for dopants and recombination
centers can be assumed. In a-Si:H, these must be modeled
by a continum of states. The computer simulation for a-
Si:H devices is therefore based on the solution to the
following set of partial differential equations under

steady-state conditions:

V2V = -§(p -n +Ngap+NpF =N,0) )
Vii=q (Rp=Gn) (2)
VJp=-q (Rp-Gp) @

For homo-structures, the hole and electron currents are

given by the following transport equations:

Jo=KTiy Vi—-quan-VV, 1))
Jp=—KTupVp—quppVV. 5)

In these equations, all the terms have their usual
definitions except N;, , which accounts for the charge
trapped in the exponential tail states (indicated by
subscript tail) and the dangling-bond defect states
(indicated by subscript db):

Ngap=Npyg+Nay- 1)
The total recombination due to these mechanism is
R- G = (R~ Gy +(R- Gy, 7

Recombination through the donor and acceptor impurity
states is neglected, as is band-to-band recombination.
Vectors are denoted here as boldface. In Poisson's
equation, it was assumed that the dielectric constant does
not vary with position. The electron and hote mobilities
are the band mobilities. The ideal case, in which insulator
has infinite resistivity and no fixed charge, was

postulated.

111, Physical Models and Boundary Conditions

The important terms in the equations (1) to (7) are

briefly summarized below. Most of models have been

suggested and extended for a-Si:H device simulations by
Gray [4] and Park [5]. The detailed treatment can be
found in references [4] and [5}.

Due to its amorphous nature it may be necessary
to model the donor and acceptor states in amorphous
silicon as a Gaussian distribution of levels about a central
energy, B, and E,, respectively. It is assumed that these
states do not act as recombination centers and this
formulation results in the quasi-Fermi levels for electrons
and holes determine the occupation of the donor and
acceptor levels, respectively. The energy distribution of
the band tails has an exponential energy dependence
which begins some distance away from the mobility edges
{6], [7]. The valence band tail and the conduction band
tail are assumed to be donor-like and acceptor-like,
respectively. The theory of Taylor and Simmons {8] for
arbitrary distributions of trapping levels is applied to
calcutate the net trapped charge in the band tails, Ngsp

Dangling-bond defect states are located near the
middle of the mobility gap and play an important role in
the operation of a-Si:H devices. These are distributed
states which are amphoteric in nature. The distribution is
assumed to be Gaussian. There are three possible charge
states for dangling-bond stsates: positive (D*), neutral
(D®), and negative (D™). The density of these states is
referred to as Np#, N, and Np-, respectively. Trapping
and recombination statistics for multiple energy-level
defect states has been treated by Sah [9], and by Sah and
Shockley [10]. This treatment has been extended for a
Gaussian distribution of such states by Gray [4] and Park
[5]. The rate of recombination via these states is also
given

The program, TFT2SP contains two types of
basic boundary conditions: simple Dirichlet (ohmic
contact) and Neumann (reflective) boundary conditions.
These contact types are indicated in Figure 1 for all the
boundaries of the simulated TFT structure. The insulating
contact between metal gate and gate insulator is also
treated as an ohmic contact. Along the outer (non-
contacted) edges and at the interface between two different

materials of the device to be simulated, the difference

between the normalized components of the respective

electric displacements must be equal to any surface charge
density, p,,, present along the interface. Current is not

permitted to flow from the semiconductor into an

insulating region and current densities at interface are
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Figure 1 Two-dimensional finite difference grid for an a-
Si:H TFT with boundary surface types.

controlied by recombination at the interface.
IV. Program Description

The highly non-linear nature of the transport
- equations to be solved suggests the use of approximate
numerical methods. For simplicity and accuracy, the well-
known non-uniform finite difference method of the first
and second derivatives with respect to the position is
chosen to discretize Poisson's equation and the hole and
electron continuity equations [11], [12]. A schematic two-
dimensional finite difference grid, the concept of which is
implicit to the choice of a difference method, is illustrated
in Figure 1. The drift-diffusion transport equations were
discretized using Scharfetter-Gummel method [13]. The
discretized equations were normalized by the scheme of
A. de Mari [14] except that the signs of currents are
conventional. For the discretization at a-Si:H/SiNy
interface nodes, the algorithm, devised by Sutherland
[15], was employed for the explicit inclusion of interface
surface charge in the finite-difference equations.
Since the band tails fall off rapidly, away from the
band edges, the integrals representing the charge or
recombination rate of the band tails can be well

approximated by the following sum [4}:
(-]
., n
I= off(z)e"-dz =2 wif(z) ®

where w; and 7 are the weight factors and zeros of one of
the Laguerre polynomials. This approximation is
commonly referred to as Laguerre integration. For the
remaining integrals of state functions which have a

Gaussian shape, if the Gaussians are not overly broad,

another approximation, Hermite integration, can be

applied [4]):
n
= of:(z)e"’dz = I, wif(@), ©)

where, in this case, w; and z; are the weight factors and
zeros of one of the Hermite polynomials. These integral
approximations considerably reduce the computation time
without appreciably affecting the accuracy [4}. A 15-point
Laguerre and a 9-point Hermite integration have been
implemented. When the bias applied to electrodes are
abruptly changed by large steps, it is usually necessary to
damp numerical ringing in the Newton iterations. The
numerical damping algorithm presented by Brown and

Lindsay [16] was used.
V1. Model Verification

In order to gain confidence in any numerical
model, it is necessary to examine some test cases for
which either an approximate analytical solution or
experimentally measured data is available. In this section
the simulated resutts for a specific TFT are presented and
compared to the measured data. An a-Si:H TFT with SiO2
gate insulator was simulated for n-type device. The
simplified structure of an a-Si:H TFT as shown in Figure
1 was simulated for the verification of the model. The
important material and device parameters which were
optimized to have the best fit to the experimental data and
used in the computation are summarized in Table 1 and 2.
The set of parameters used here may be not a unique one.
However, they are in the reasonable range. The relative
importance of the different sources of recombination
depends entirely on the choice of capture cross sections
involved, and parameters used here are not necessarily the
correct ones but optimized through the photoconductivity
study of a-Si:H solar cell [5]. A schematic energy band
model for the gap states is shown in Figure 2. Although
the program was written so that surface states charge can
be included, their effect on the solution is quite small and
can be accounted for within the flatband voltage and/or

other gap states, hence they were neglected for the present

- simulations. The effective values of the electron and hole

band mobilities were optimized as constants for the best

fit to the experimental results. The distribution of

electrostatic potential and free electron concentration under

the bias condition of Vg=5V, Vp=9.6 V, and Vg=0 V is
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assumptions as possible. Especially, recombination due to situation with the accurate physical models for some

the exponential band-tail states and the amphoteric . anomalous characteristics of a-Si:H in TFTs.

dangling-bond defect states as well as hole current are w?
incorporated in the program. This computer program was s ]
employed to verify its validity by simulating the current- 0t ]
voltage characteristics of an a-Si:H TFT. The simuiated ot ]
results show good agreement with the experimental data ‘5‘ o
indicating that this computer simulations are realistic. g n
Although it is possible that other sets of physical hd M VpmtV
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Figure 6 The measured and simulated (semi-logarithmic)
transfer characteristics of an a-Si:H TFT at
Vp=l V.
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Figure 4 Two-dimensional distribution of mobile electron ~
- density in a-Si:H layer under the condition, 5
V=5 and V;=9.6 V (not shown to scale).
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Figure 5 Free electron and hole concentrations along the
a-Si:H/insulator interface under V=5V and
V=96 V.

parameters may generate the same I-V characteristics, the
optimized parameters used for the I-V simulations are
reasonable and the simulation results do demonstrate how

TFTSP can be used to analyze transport mechanisms in a-

8i:H TFTs. The possibility for the developed program to

be refined and used for the optimal modeling and design
of a-Si:H TFTs is presented. TFTSP can be employed to

further explore device physics in more complicated

Figure 8 Two-dimensional distribution of generation
recombination rate in a-Si:H layer under the
condition, V=5 and V,=9.6 V (not shown to
scale),
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Pammeter deacription Vae |
e, Ny (e | efffective density of swies for th jon and valencs  19.5x10%°
dands
EgleV) mobitity / band 1.72
Ep(eV) donor energy level below Ec 0.15
E, €V) leved above By 020 |
standard devistions of Gaussion distributions of donors 0.06
@, (6V) | standant devintions of Caussian distributions of 064
pa () p ions in th ion band tail for 5.0x107
electrons
_Glemd | capture cross-sections in the conduction band il for holes {3.0310°

S (am)___| capture cross sections in the valence band il for clectrons |3.0x10™"
G (6% | capture cross-sections in the valence band il for boles__15.0x)0°"7

| 2nastemey™?) | density of stmtes of valence band tsil at By 205107

Bag (e eVY | density of siates of conduction band tait st T 2.0010%
E, (eV) chamcteristic energies of conduction bend tail 0.027
EgleV) characteristic energies of valence hand tait 0.043

Npro, (#em?)_ dangling bomd state density 7.5010°7
Ep, (V) | effective encrzy level of the D 3 P transitions 0.59
Ep (V) | effective energy levels of the D~ ¢ I transitions 110
04(eV) | standurd deviation of Gaussian distribution of the dangling |  0.18

bond states

(em)__iholec cross-sections for O - DY 1.6%10°

G fomy  Inole cruss-sections for D~ — D 4.0x10°%

Spefemd  electron croms-sections for D — 0° 263107

S () | eleorron canture cros-sections for D%y I sax10”?

Table 1 Values of important material parameters used for
the n-channel a-Si:H TFT simulations.

Parameter Description Value
.,....Exh (pm) channel length 10
Loy () overlapped drain/source region 50

Lo (pm) unoverlapped drain/source region| 50

W (um) channel width 1000

dﬂL.A) insulator thickness 2000
dg (A) 2-8i layer thickness 3700
Koy dielectric constant of gate insulator] 3.9
Ksi dielectric constant of a-Si:H 118

Table2 Values of important device parameters used for
the n~channel a-Si:H TFT simulations.

shown in Figure 3 and 4, respectively. The free electron
and hole concentrations along the a-Si:H/SiOs interface
are shown in Figures 5. Note that the pinch-off region is
clearly shown at the drain end of the channel. These
simulation results represent a self-consistent two-
dimensional solution of the transport equations avoiding
one-dimensional simplification such as the gradual-
channel approximation. Figure 6 shows the
corresponding transfer characteristics, which is compared
with the experimental data. The conventional threshold
voltage (V) and field-effect mobility () are extracted
by assuming that for Vp<<Vg, Ip= Cox gm-—‘g-(vgs-
Vy=Vp/2)Vp. The threshold voltage and field-effect
mobility can be defined as the intercept less V,/2 and
Wppr= IICO,‘%%’% respectively. p=0.08 cm¥sec-V

nd Vp-Vpp=17.0 V (Vpg=-5.5 V) were approximately
»btained for the modeled device. Note that the derived
alue of the field-effect mobility for electron (pug=0.08

:m?/sec-V) is lower than the electron band mobility
1,=10 ecm?/sec-V). Figure 7 shows the simulated and

measured 1-V characteristics for the TFT. There is good
agreement between simulation and experiment indicating
that these computer simulations are realistic. The net
generation/recombination rate under Vg =5V, V= 9.6
V, and Vg = OV is illustrated in Figure 8. A graphic
representation of this quantity is not straightforward since
it may have large values with either sign or steep
gradients, The following tranformation [11] was applied:

1G-RI
= -R) log{ 1+ —p——g——r’ (10)
z sgn(G-R) og( * 10%0 cm‘Jsec'})
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Figure 2 Energy band model for the gap states of a-Si:H.
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Figure 3 Two-dimensional electrostatic potential
distribution when V=5 and Vp=9.6 V (not
shown to scale).

VII. Summary

A computer program, TFTSP, has been developed
for the two-dimensional simulation of a-Si:H TFTs,
which provides ability in the choice of physical
parameters so that different models can be evaluated and
compared. it can handle distributed donor, acceptor, and
dangling-bond states, as well as exponential tails. TFTSP
was developed to remove as many of the simplifying
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