• 제목/요약/키워드: Finite difference element

검색결과 1,024건 처리시간 0.028초

대류확산문제의 유한요소해석을 위한 Line-by-Line 해법 (A Line-by-Line Technique for Convection-diffusion Problem Implementing Finite Element Method)

  • 유재석
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.97-102
    • /
    • 1991
  • Finite element method has been developed recently for the solution of the convection-diffusion problems. Finite element method has several advantages over finite difference method, but its requirement of the larger memory size of the computer has prevented from wide application. In the present study, line-by-line technique has been implemented to finite element method to overcome this disadvantage. Two dimensional laminar natural convection in square cavity was chosen as an example in this study. The numerical result shows good agreement with bench mark solution and the size of the coefficient marix has been reduced drastically.

  • PDF

유선상류 유한요소법을 이용한 유동장의 해석 (An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method)

  • 최형권;유정열
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

동결과정을 포함한 다공층에서 자연대류에 대한 유한요소 해석 (Finite element solutions of natural convection in porous media under the freezing process)

  • 이문희;최종욱;서석진;박찬국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.51-56
    • /
    • 2000
  • The Finite Element Solutions Is reported on solid-liquid phase change in porous media with natural convection including freezing. The model is based on volume averaged transport equations, while phase change is assumed to occur over a small temperature range. The FEM (Finite Element Method) algorithm used in this study is 3-step time-splitting method which requires much less execution time and computer storage the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the energy equation. For natural convection including melting and solidification the numerical results show reasonable agreement with FDM (Finite Difference Method) results.

  • PDF

Sensitivity-based reliability analysis of earth slopes using finite element method

  • Ji, Jian;Liao, Hong-Jian
    • Geomechanics and Engineering
    • /
    • 제6권6호
    • /
    • pp.545-560
    • /
    • 2014
  • For slope stability analysis, an alternative to the classical limit equilibrium method (LEM) of slices is the shear strength reduction method (SRM), which can be integrated into finite element analysis or finite difference analysis. Recently, probabilistic analysis of earth slopes has been very attractive because it is capable to take the soil uncertainty into account. However, the SRM is less commonly extended to probabilistic framework compared to a variety of probabilistic LEM analysis of earth slopes. To overcome some limitations that hinder the development of probabilistic SRM stability analysis, a new procedure based on recursive algorithm FORM with sensitivity analysis in the space of original variables is proposed. It can be used to deal with correlated non-normal variables subjected to implicit limit state surface. Using the proposed approach, a probabilistic finite element analysis of the stability of an existing earth dam is carried out in this paper.

$80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석 (Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis)

  • 김일수;신병철
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

Steady-State Current Characteristics for Squirrel Cage Induction Motor according to Design Variables of Rotor Bars using Time Difference Finite Element Analysis

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.104-108
    • /
    • 2017
  • Induction motors have wide applicability in many fields, both in industrial sectors and households, for their advantages of a high efficiency and robust structure. The introduction of power-source-containing harmonics into the induction motor winding lowers its efficiency and increases its temperature, greatly affecting its operation characteristics. In this study, we performed an electromagnetic field analysis using the time-difference finite-element method with the purpose of analyzing the steady-state current characteristics of an induction motor. Additionally, we calculated the steady-state current with a method combining an electromagnetic field equation and a circuit equation. In the electromagnetic field analysis, the nonlinearity was taken into account using the Newton-Raphson method, and a backward time-difference method was employed for the time derivative term. Then, we compared the steady-state current of the induction motor obtained by calculation with the experimentally measured values, thus validating the proposed algorithm. Furthermore, we analyzed the impacts of the shape and material of the rotor conductor bar of the induction motor on the steady-state current of the main winding.

항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석 (Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena)

  • 박주배;권태헌
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1465-1477
    • /
    • 1993
  • 본 연구에서는 분말혼합체의 특성인 항복응력을 포함한 Generalized Newtonian Fluid의 구성 방정식을 도입하고 미끄럼현상을 고려한 신소재의 사출성형 충전과정 해석용 CAE(computer aided engineering)시스템을 개발하였다. 수치모사를 위한 수치해석방법으로는, 유한요소법(finite element method)과 유한차분법(finite difference method)을 함께 사용하였다. 유한요소법과 검사체적법(control volume technique) 을 병용하여 유동의 진행을 수치모사 하였으며, 유한차분법을 사용하여 온도분포를 계산하였다.

유한요소법에 의한 드럼 브레이크의 열응력 해석 (Thermal Stress Analysis of Drums Brakes by Finite Element Method)

  • 구병춘;서정원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.831-836
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In this paper, heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on tile thermal stress was checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

유한요소법에 의한 드럼 브레이크의 열탄성 접촉해석 (Thermoelastic Contact Analysis of Drums Brakes by Finite Element Method)

  • 구병춘;서정원
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.173-180
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In the first part, the influence of the s-cam load angles and elastic modulus of the pad on the contact pressure distribution between pad and drum was checked by a three dimensional model. In the second part heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on the thermal distribution is checked. The analysis was performed by ABAQUS/Standard code.

  • PDF

Three-dimensional finite element analysis of implant-supported crown in fibula bone model

  • Park, Young-Seok;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.326-332
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare stress distributions of implant-supported crown placed in fibula bone model with those in intact mandible model using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models were created to analyze biomechanical behaviors of implant-supported crowns placed in intact mandible and fibula model. The finite element models were generated from patient's computed tomography data. The model for grafted fibula was composed of fibula block, dental implant system, and implant-supported crown. In the mandible model, same components with identical geometries with the fibula model were used except that the mandible replaced the fibula. Vertical and oblique loadings were applied on the crowns. The highest von Mises stresses were investigated and stress distributions of the two models were analyzed. RESULTS. Overall stress distributions in the two models were similar. The highest von Mises stress values were higher in the mandible model than in the fibula model. In the individual prosthodontic components there was no prominent difference between models. The stress concentrations occurred in cortical bones in both models and the effect of bicortical anchorage could be found in the fibula model. CONCLUSION. Using finite element analysis it was shown that the implant-supported crown placed in free fibula graft might function successfully in terms of biomechanical behavior.