• 제목/요약/키워드: Finite cylindrical shell

검색결과 202건 처리시간 0.025초

횡방향 압력을 받는 복합적층 원통실린더의 좌굴후 거동 및 손상해석 (Postbuckling and Damage Analysis of Composite Laminated Hollow Cylinder under Lateral Pressure)

  • Chongdu Cho;Guiping Zhao;HeonJu Kin
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.163-172
    • /
    • 2000
  • The postbuckling behavior and progressive damage of composite laminated cylindrical shell under uniform external pressure were investigated by nonlinear finite element method programming. For the finite element analysis, nine-node 3-D degenerated elements were utilized, and arc-length method including line search was adopted for the iteration and load-increment along postbuckling equilibrium path. As results. buckling load, postbucking behavior, and progressive failure f3r various composite laminated cylindrical shells were discussed.

  • PDF

비축대칭 하중을 받는 원통형 쉘의 단순화 해석 (A Simple Analysis of the Cylindrical Shell Subjected to a Nonaxisymmetric Load)

  • 남문희;이관희
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.179-187
    • /
    • 2000
  • 비축대칭 하중을 받는 축대칭 쉘의 해석시 구조의 축대칭성을 고려하면 시간과 노력을 절약할 수 있다. 하중과 변위에 대하여 원주방향으로 Fourier 급수전개를 고려함으로서 비축대칭하중을 받는 축대칭 쉘의 해석은 뼈대요소처럼 취급할 수 있다. 본 논문에서는 Fourier 급수전개를 이용한 통상의 유한요소법에 의하여 비축대칭 하중을 받는 원형탱크의 강성행렬을 유도하고, 이 강성행렬을 행렬의 조작에 의해 전달행렬로 전환하여 전달행렬법을 적용하였다. 이 논문은 비축대칭하중을 받는 축대칭 쉘의 해석을 위한 연립방정식의 수를 최소화하는데 그 목적이 있다. 제안된 방법에 의한 풍하중과 물하중을 받는 원형탱크의 해석결과는 타 방법에 의한 해석결과와 잘 일치하고 있다.

  • PDF

배플을 갖는 원통형 유체저장 탱크의 연성진동해석 (Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

유한대판법을 이용한 다층 원통쉘의 응력해석 (Stress Analysis of a Multi-Layered Cylindrical Shell Using Finite Strip Method)

  • 박승진;양수진
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2015년 정기학술대회
    • /
    • pp.152-154
    • /
    • 2015
  • 본 논문은 유한요소의 일종인 유한대판법(Finite Strip Method)를 사용하여 양단 단순지지된 3차원 다층 원통쉘의 내측과 외측에 받는 하중이 2층 구조(강재/콘크리트) 및 3층 구조(강재/콘크리트/강재)에 미치는 영향과 이종재료인 다층 원통쉘의 최적 상태에 대해 알아본다.

  • PDF

열 효과를 고려한 비틀림이 있는 회전 블레이드의 진동 특성 (Thermal Effect on the Vibration Characteristics of Pretwisted Rotating Blade)

  • 기영중;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.810-815
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of this study. In the present work, general formulation is proposed to analyze the rotating shell-type structures including the effect of centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. In addition, it is investigated the effect of thermal load on the vibration characteristics of pretwisted blade. Numerical results are summarized for the various parameters such as rotating speed, angle of pretwist and stacking sequence of a composite blade. Also, present results are compared with the previous works and experimental data.

  • PDF

맨드릴을 사용한 전자기 축관성형의 해석 (Analysis of Tube Compression with a Mandrel by Electromagnetic Forming)

  • 정상철;최길봉;신효철
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.371-379
    • /
    • 1993
  • The wrinkling in the electromagnetic tube compression with a mandrel is remarkably smaller than that of the process without it. To analyze this phenomenon, the critical forming parameters such as the ratio of the clearance to the shell radius, the ratio of the thickness to the shell radius, and the ratio of the applied pressure to the standard pressure are introduced tp consider the effect of the mandrel, in addition to those of the thickness of shell and applied loads. The amplification ratio is also used to observe the magnitude of amplification. The results obtained by 2-D finite element method show that the initial imperfection embedded in the radius of cylindrical shell is the dominant factor to determine the final shape of the tube compression, and that the amplification ratio tends to have smaller values with the smaller clearance ratio and also with the larger thickness and pressure ratios.

비틀림이 있는 회전블레이드의 열 효과를 고려한 진동 특성 (Thermal Effect on the Vibration Characteristics of Twisted Rotating Blade)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.380.1-380
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of present study. In this work, general formulation is proposed to analyze rotating shell type structures including the centrifugal force, Coriolis acceleration and initial twist. Futhermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. (onitted)

  • PDF

셸이론을 이용한 스크롤 압축기 하우징의 자유진동해석 (Free Vibration Analysis of the Scroll Compressor Housing by Shell Theory)

  • 김현수;이영신;양명석;최명환;류충현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.242-247
    • /
    • 2000
  • In this study, the Rayleigh's energy method and the Rayleigh-Ritz method on the basis of Flugge's shell theory was used to analyze the dynamic characteristics of the scroll compressor housing with clamped boundary condition. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis.

  • PDF

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

복합적층 원뿔형 쉘의 파라미터 연구 (Parametric Study of Composite Laminated Conical Shells)

  • 손병직;정대석
    • 한국안전학회지
    • /
    • 제22권5호
    • /
    • pp.41-49
    • /
    • 2007
  • In general, the curved structures have the engineering efficiency as well as a fine view compared with straight member. Also, composite materials are composed of two or more different materials to produce desirable properties for structural strength as compared to single ones. Shell structures with composite materials have many advantages in strength and weight reduction. Therefore, composite laminated conical shells are analyzed in this study. To solve differential equations of conical shells, this paper used finite difference method. Various parametric study according to the change of radius ratio, vertex angle and subtended angle are examined. The change of radius ratio, vertex angle and subtended angle mean the change from conical shells to cylindrical shells, conical shells to circular plates and open shells closed shells, respectively.