• Title/Summary/Keyword: Finite cylindrical shell

Search Result 199, Processing Time 0.026 seconds

Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells

  • Dogan, Ali;Arslan, H. Murat;Yerli, Huseyin R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.493-510
    • /
    • 2010
  • This paper presents effects of anisotropy and curvature on free vibration characteristics of cross-ply laminated composite cylindrical shallow shells. Shallow shells have been considered for different lamination thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and deformation have been showed. Then, using Hamilton's principle, governing differential equations have been obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply composite shells has been given. By using some simplifications and assuming Fourier series as a displacement field, differential equations are solved by matrix algebra for shallow shells. The results obtained by this solution have been given tables and graphs. The comparisons made with the literature and finite element program (ANSYS).

Self-excited Vibration Characteristics of Cylindrical Composit Shell subject to Thermal Stresses in Supersonic Flow (초음속 유동에서 열응력을 받는 원통형 복합적층 쉘의 자려진동 특성)

  • Oh, Il-Kwon;Lee, In;Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.897-903
    • /
    • 2001
  • The supersonic flutter analysis of cylindrical composite panels subject to thermal stresses has been performed using layerwise nonlinear finite elements. The geometric nonlinear finite elements of cylindrical shells are formulated using hamilton's principle with von Karman strain-displacement relationship. Hans Krumhaar's modified supersonic piston theory is appled to calculate aerodynamic loads for the panel flutter analysis. The present results show that the critical dynamic pressure of cylindrical panels under compressive thermal stresses can be dramatically reduced. The margin of aerothermoelastic stability considering thermal and aerodynamic coupling should be verified in the structural design of launch vehicles and high speed aircrafts.

  • PDF

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Investigation of the effect of shell plan-form dimensions on mode-shapes of the laminated composite cylindrical shallow shells using SDSST and FEM

  • Dogan, Ali;Arslan, H. Murat
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.303-324
    • /
    • 2012
  • This paper presents the mode-shape analysis of the cross-ply laminated composite cylindrical shallow shells. First, the kinematic relations of strains and deformation are given. Then, using Hamilton's principle, governing differential equations are developed for a general curved shell. Finally, the stress-strain relation for the laminated, cross-ply composite shells are obtained. By using some simplifications and assuming Fourier series as a displacement field, the governed differential equations are solved by the matrix algebra for shallow shells. Employing the computer algebra system called MATHEMATICA; a computer program has been prepared for the solution. The results obtained by this solution are compared with the results obtained by (ANSYS and SAP2000) programs, in order to verify the accuracy and reliability of the solution presented.

Effect of Core-Shell Structure on Compaction Behavior of Harmonic Powder (Core-shell 구조를 지니는 하모닉 분말의 성형거동 분석)

  • Joo, Soo-Hyun;Park, Hyo Wook;Kang, Soo Young;Lee, Eon Sik;Kang, Hee-Soo;Kim, Hyong Seop
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are $34.3{\mu}m$ and $3.2{\mu}m$, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.

Acoustic Radiation from a Finite-length Shell with Substructures Subjected to an Impulsive Load (부구조물이 있는 유한길이의 쉘 구조물에서의 충격하중에 의한 음향방사)

  • 최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.62-67
    • /
    • 1995
  • A method for determining impulsive responses and acoustic radiation for submerged shells of finite length has been presented. The method is a modal-based method, and uses a surface variational principle to obtain data in the frequency domain. The fast Fourier transform technique is used to convert the data to the time domain. The surface pressure responses of a cylindrical shell with endcaps wer compared with those of an infinite shell. It was shown that the surface pressures coincide exactly before any significant reflections from the endcaps occur. Traces of different types of waves were identified from the dispersion relations of the infinite shell. The contributions of flexural and longitudinal waves and these due to the direct radiation from the driving force to the fluid pressure were demonstrated using near-field plots. The exchange of energy between the shell and fluid was examined for shells with and without bulkheads. It was shown that a significant amount of the energy which enters the fluid returns to the shell and most of the energy is dissipated in the shell. It was also shown that the shell with bulkheads radiate significantly more energy into the far-field than the empty shell.

  • PDF

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.