DOI QR코드

DOI QR Code

Effect of Core-Shell Structure on Compaction Behavior of Harmonic Powder

Core-shell 구조를 지니는 하모닉 분말의 성형거동 분석

  • Joo, Soo-Hyun (Center of Aerospace Materials, POSTECH (Pohang University of Science and Technology)) ;
  • Park, Hyo Wook (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology)) ;
  • Kang, Soo Young (Department of Metallurgical and Material Engineering, Inha Technical College) ;
  • Lee, Eon Sik (Materials Research Division, RIST) ;
  • Kang, Hee-Soo (Materials Research Division, RIST) ;
  • Kim, Hyong Seop (Center of Aerospace Materials, POSTECH (Pohang University of Science and Technology))
  • 주수현 (포항공과대학교 항공재료연구센터) ;
  • 박효욱 (포항공과대학교 신소재공학과) ;
  • 강수영 (인하공업전문대학 금속재료과) ;
  • 이언식 (포항산업과학연구원 재료공정연구소) ;
  • 강희수 (포항산업과학연구원 재료공정연구소) ;
  • 김형섭 (포항공과대학교 항공재료연구센터)
  • Received : 2015.02.23
  • Accepted : 2015.02.26
  • Published : 2015.04.28

Abstract

In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are $34.3{\mu}m$ and $3.2{\mu}m$, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.

Keywords

References

  1. H. S. Kim and D. N. Lee: J. Kor. Inst. Met. Metal., 30 (1992) 37 (Korean).
  2. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc. New York (1998) 128.
  3. A. Salak: Ferrous powder metallurgy, CISP, Cambrige, UK (1996) 62.
  4. J. S. Hirschhorn, G. M. Maxwell and A. V. Nadkarni: Powder Tech., 5 (1971) 72.
  5. I. Nikolakakis and N. Pilpel: Powder Tech., 56 (1988) 95. https://doi.org/10.1016/0032-5910(88)80003-2
  6. D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech., 126 (2002) 65. https://doi.org/10.1016/S0032-5910(02)00034-7
  7. D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech., 126 (2002) 75. https://doi.org/10.1016/S0032-5910(02)00035-9
  8. H. S. Kim and J. S. Lee: J. Korean Powder Metall. Inst., 11 (2004) 301 (Korean). https://doi.org/10.4150/KPMI.2004.11.4.301
  9. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc. New York (1998) 152.
  10. J.-W. Jang, J.-H. Kim, J. Hwang, T. Y. Lim, J.-H. Lee and M.-J. Lee: Korean J. Met. Mater., 52 (2014) 391. https://doi.org/10.3365/KJMM.2014.52.5.391