• Title/Summary/Keyword: Finite cylinder

Search Result 594, Processing Time 0.022 seconds

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

An Integrated Process Planning System and Finite Element Simulation for Multistage Cold Forging (유한요소해석을 통합한 다단 냉간단조 공정설계시스템)

  • 최재찬;김병민;이언호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 1995
  • An integrated process planning system can determine desirable operation sequences even if they have little experience in the design of multistage cold forging process. This system is composed of seven major modules such as input module, pre-design module, formability check module, forming sequence design module, forming analysis module, FEM verification module, and output module which are used independently or in all. The forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics(diameter, height, and radius), the part geometry is expressed by a list of the primitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the dimensional tolerances and the proper sequence of operations for parts, is generated under the environment of AutoCAD. Several forming sequences generated by the planning system can be checked by the forming analysis module. The acceptable forming sequences can be verified further, using FE simulation.

  • PDF

Numerical Simulation of Body Motion Using a Composite Grid System (중첩 격자계를 이용한 물체운동의 수치 시뮬레이션)

  • 박종천;전호환;송기종
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

The Characteristics of Field & Mode Distributions in a Cylindrical Reverberation Chamber (원통형 구조 전자파 잔향실 내 모드 및 필드 분포 특성)

  • 김정훈;이중근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.431-436
    • /
    • 2003
  • In this paper, simulation results of an electromagnetic field and mode distributions in a cylindrical reverberation chamber were presented. Reverberation chamber is an alternative test facility for a semi anechoic chamber, which is widely used for the analysis and measurement of electromagnetic interference and immunity tests. The method of computing the number of modes in a cylindrical reverberation chamber was presented and the number of modes in a cylindrical reverberation chamber with the same volume was compared with the different ratio of radius to height. The FDTD method was used to produce field characteristics inside of rectangular, right-angled isosceles triangular, and cylinder type reverberation chambers with the same test volume.

Development of the Simulator for Estimating Intake Noise of Vehicle and Its Improvement (Part I) (자동차 흡기소음평가 시뮬레이터 개발 및 이를 이용한 소음저감 성능개선)

  • Oh, Jae-eung;Han, kwang-Hee;Hong, Jeong-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.391-398
    • /
    • 1998
  • The intake noise, a major source of vehicle noises, has rapidly become a noticeable, and has been studied to reduce the level. Traditionally, the intake system has been developed through the road test and the experiment using a engine dynamo, namely, the trial and error process. This approach require very high cost and long time consuming to develop the system. In this study, the simulator which had a speaker in the cylinder head was presented. It was easy to analyze the acoustic characteristic of the intake system in laboratory environment. This study presented a improvement to reduce the level of the intake noise using the Transfer Matrix Method and NIT/SYSNOISE, FE analysis commercial software. It was to select optimum position of a resonator and verified by the simulator. This simulator can be used early in the design stage of development of the intake system.

Finite Element Analysis of Stress Behaviour Characteristics in Gas Pressure Vessels (가스압력용기의 응력거동특성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.58-64
    • /
    • 2003
  • This paper presents design safety analysis of pressure vessels. The gas pressure and thermal loads are applied to the pressure vessel simultaneously. In this study, ASME Sec. VIII Div. 2 code was accepted for the safety design of high-pressure vessel. And this result was analyzed using a coupled thermal-mechanical FEM analysis technique. The FEM computed result shows that ASME design code may not guarantee for combined loads of high gas pressure and thermal loads. And solid pressure vessel may be safe compared to other pressure vessels with supporting rings round the cylinder body.

  • PDF

A Study on the Buckling and Ultimate Strength for Cylindrically curved plate subject to combined load (조합하중을 받는 원통형 곡판구조의 좌굴 및 최종강도 거동에 관한 연구)

  • Oh, Young-Cheol;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.25-26
    • /
    • 2007
  • Ship are typically thin-walled structures and consists of stiffened plate structure by purpose of required design load and weight reduction etc. Also, a hull structural characteristics are often used in structures with curvature at deck plating with camber, side shell plating at fore and aft parts and bilge circle parts, It have been believed that these structures can be modelled fundamentally by a part of cylinder. Structural component with curvature subjected to combined loading regimes and complex boundary conditions, which can potentially collapse due to buckling. Hence, for more rational and safe design of ship structures, it is crucial importance to better understand the interaction relationship of the buckling and ultimate strength for cylindrically curved plate under these load components. In this study, the ultimate strength characteristic of curved plate under combined load(lateral pressure load + axial compressive load) are investigated through using FEM series analysis with varying geometric panel properties.

  • PDF

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens (자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성)

  • Park, Byoung-Sun;Joh, Sung-Ho;Lee, Sang-Heon;Kang, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF