• Title/Summary/Keyword: Finite cylinder

Search Result 594, Processing Time 0.028 seconds

Extremely Low Numerical Dispersion FDTD Method Based on H(2, 4) Scheme for Lossy Material

  • Oh, Il-Young;Hong, Yongjun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.158-164
    • /
    • 2013
  • This paper expands a previously proposed optimized higher order (2, 4) finite-difference time-domain scheme (H(2, 4) scheme) for use with lossy material. A low dispersion error is obtained by introducing a weighting factor and two scaling factors. The weighting factor creates isotropic dispersion, and the two scaling factors dramatically reduce the numerical dispersion error at an operating frequency. In addition, the results confirm that the proposed scheme performs better than the H(2, 4) scheme for wideband analysis. Lastly, the validity of the proposed scheme is verified by calculating a scattering problem of a lossy circular dielectric cylinder.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

A Study on the Nonlinear Structural Behavior of a High-Pressure Filament Wound Composite Vessel (소형 복합재료 고압력 용기에 대한 비선형적 구조거동에 관한 연구)

  • 황경정;박지상;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.10-14
    • /
    • 2002
  • Structural behavior of high-pressure composite vessels of TYPE 3 (full-wrapped over a seamless aluminum liner) was studied through numerical simulations based on 3D nonlinear finite element method. Under high-pressure loading, a TYPE 3 composite vessel shows material nonlinearity due to elastic-plastic deformation of aluminum liner, and mismatch of deformation at the junction of cylinder and dome causes geometrical nonlinearity. Finite element modeling and analysis technique considering this nonlinearity was presented, and a pressure vessel of 6.8L of internal volume was analyzed. Design specification to satisfy requirements was determined based on analysis results.

  • PDF

Dynamic Analysis of Flexible Mechanisms with Clearances Using Finite Elements (유한요소를 이용한 유연성 간극기구의 동적 해석)

  • 길계환;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.288-297
    • /
    • 1990
  • The method of analyzing flexible mechanisms with clearances was studied considering flexibility of beams in the mechanism using finite elements. Both ends of a beam were modeled as free following Dubowsky's impact pair model. Instead some force constraints were imposed at imposed at the connections between adjoining links. Coulomb model has been developed using dry frictions in place of tangential damping forces in the impact pair model and the contact compliance and damping coefficient approximated in a form of root function were used. As examples, impacts of a rigid ball in a cylinder, impact beam model and four-bar mechanisms made up of three flexible links with clearance connections were simulated numerically. The results from examples showed similar but a little bit smaller magnitude of impact forces compared with published studies.

Coupled Oil-Structure Analysis for Piston Motion in Reciprocating Compressors (윤활-구조물 연계해석을 이용한 왕복동형 압축기의 피스톤 거동해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Ryu, Sung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.513-518
    • /
    • 2003
  • The piston slap phenomenon is one of the major noise source of reciprocating compressors used in household electric appliances. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, the dynamic behavior of suction and discharge valves are analytically calculated and the lubricant behavior between piston and cylinder are investigated using two-dimensional Reynolds equation. And the piston slap caused by the piston secondary motion is investigated by the finite element method.

  • PDF

A Study on the Effects of the Design Parameters and Sealing Mechanism of the Exhaust Gas in Engine Exhaust System (엔진 배기계의 배기가스 누설 메카니즘과 설계인자들의 영향에 관한 연구)

  • Choi, B.L.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2010
  • This paper deals with the sealing mechanism of the gasket component and the effects of design parameters for the exhaust manifold. The finite element model includes hot-end exhaust system and a simplified gasket model supplied by ABAQUS software. The mechanical behaviors of bead and body of a gasket are measured after several times of cyclic loads by gasket supplier. From the finite element analysis due to the cyclic thermal loads, the flange of exhaust manifold shows thermal expansion and contraction in longitudinal direction as well as convex and concave deformations with respect to the engine cylinder head. And, the contact pressures of the gasket beads suddenly changes by normal deformation of inlet flanges. Therefore, the magnitudes of contact pressures could be used to determine the sealing characteristics of the exhaust gas in the exhaust system. The distributions of contact pressures in gasket bead lines shows a good agreement with the engine test results.

Simulation of Charging Process in Forming Electret for Sensor Material (센서재료용 일렉트렛트 형성에 대전과정 시뮬레이션)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.185-188
    • /
    • 2011
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current(TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method(FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II) (상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II))

  • 박치모;이승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore structure, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfection, i.e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares. ABAQUS for the analysis of ring stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength ring stiffened cylinders.

Simulation of the Corona Charging Process in Polypropylene Electret for Sensor Material

  • Park, Geon-Ho;Park, Young-Chull;Yang, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current (TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method (FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Numerical Study for Effects of Density-Stratification on Wake Behind a Sphere (구 후류에 미치는 유동장 밀도 성층화 영향 전산 해석)

  • Lee, Sung-Su;Yang, Kyung-Soo;Park, Chan-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.553-559
    • /
    • 2004
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered, and linear stratification of density is assumed under Bossiness approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.