• 제목/요약/키워드: Finite Volume Method(FVM)

검색결과 137건 처리시간 0.026초

CFD를 사용한 터보기계 비접촉식 실의 누설량 예측 (Prediction of Non-Contact-Type Seal Leakage Using CFD)

  • 하태웅
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.14-21
    • /
    • 2006
  • Leakage reduction through annular type seals of turbomachinery is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. The analysis based on Bulk-flow concept has been mainly used in predicting seal leakage. However, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved for improving the prediction of seal leakage. FLUENT 6 which is commercial CFD(Computational Fluid Dynamics) code based on FVM(Finite Volume Method) and SIMPLE algorism has been used to analyze leakage of various non-contact-type seals in this presentation. Comparing with the results of Bulk-flow model analysis and experiment, the result of CFD analysis shows good agreement with that of existing theoretical analysis for the incompressible grooved seal and compressive plain and staggered seal. The CFD analysis also shows improvement on the leakage prediction of the incompressible plain seal and compressive see-through-type labyrinth seal.

비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석 (Implicit Incompressible flow solver on Unstructured Hybrid grids)

  • 김종태;김용모;맹주성
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

CFD를 사용한 복잡한 형상을 갖는 래버린스 실의 누설량 예측 (Prediction of Combination-Type-Staggered-Labyrinth Seal Leakage Using CFD)

  • 하태웅
    • Tribology and Lubricants
    • /
    • 제22권2호
    • /
    • pp.66-72
    • /
    • 2006
  • Leakage reduction through annular type labyrinth seals of steam turbine is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. In this study, numerical analysis for leakage prediction of the combination-type-staggered-labyrinth seal has been carried out using FLUENT 6 which is commercial CFD (Computational Fluid Dynamics) code based on FVM (Finite Volume Method) and SIMPLE algorism. The present CFD results are verified with the theoretical analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage. Comparing with the result of Bulk-flow model analysis, the leakage result of CFD analysis shows good agreement within 7.1% error.

하이브리드 FVM/FDM 기반의 2차원 흐름 및 스칼라 이송 모형 개발 (Development of 2DH hydrodynamic and scalar transport model based on hybrid finite volume/finite difference method)

  • 황순철;손상영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.105-105
    • /
    • 2021
  • 본 연구에서는 2차원 비선형 천수모형과 수심평균된 스칼라 이송모형을 해석하는 수치모형에 대해 기술하였다. 수치모형의 정확성을 보장함과 동시에 안정성을 높이기 위해 유한체적법, 플럭스 재구성 및 minmod 제한자를 사용하였다. 비선형 천수방정식의 이송항과 바닥 경사항은 계산된 수심의 양수 보존과 흐름의 정상 상태를 보장하기 위한 second order well-balanced positivity preserving central-upwind method를 이용하여 수치적으로 이산화되었다. 마찬가지로, 이송-확산 방정식 내 이송항은 동일한 2차 풍상차분법을 통해 수치적으로 풀이하였다. 격자점 경계면에서의 불연속으로 인한 수치진동을 방지하기 위해 이송항의 계산에 포함된 보존항의 차이로 인해 발생하는 스칼라의 수치확산을 최소화하기 위해 무차원의 비소산함수를 도입하였다. 또한, 확산항은 유한차분법을 이용하여 이산화하였다. 제안된 수치모형은 시간미분항의 계산을 위해 오일러 기법을 적용하여 계산된 수심 및 스칼라의 양수 보존여부와 함께 정지된 흐름의 정상 상태의 보존여부를 확인하였다. 제안된 수치모형의 해석 정확성을 평가하기 위해 1, 2차원 공간 내 다양한 흐름 조건에서의 해석해를 이용한 3개의 벤치마크 테스트를 수행하였다. 평균 제곱근 오차(Root Mean Squared Error, RMSE)를 산정하여 수치모형의 성능을 정량적으로 평가하였으며, 비소산함수를 적용함에 따라 스칼라의 수치확산이 감소하게 되었음을 확인하였다. 또한, 세 차례의 벤치마크 테스트 결과는 공통적으로 수치모형에 의해 계산된 결과값이 비소산함수를 고려함에 따라 해석해와 잘 일치함을 확인하였다.

  • PDF

직교격자 기반 수치기법을 이용한 부가저항 해석 (Analysis of Added Resistance using a Cartesian-Grid-based Computational Method)

  • 양경규;이재훈;남보우;김용환
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.

까단조형 인서트를 이용한 주물재의 특성연구 (A Study on the characteristics of the cast using forged insert)

  • 임홍섭;박현규;이건엽;강용기;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.354-357
    • /
    • 2008
  • In this study, the casting process using forged insert was applied to manufacturing a knuckle, in order to prove that application of casting process using forged insert is likely to get the effect of light weight and superior mechanical characteristic compared with existing casting products. Firstly, in the forging experiment, it was confirmed that the optimal configuration of the forged insert could be predicted by FE analysis. And by using FVM (Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the mechanical characteristic of the final casting product, the microstructual observation and hardness test were performed at the boundary zone between forging and casting part.

  • PDF

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng
    • Advances in Energy Research
    • /
    • 제1권1호
    • /
    • pp.53-78
    • /
    • 2013
  • Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.

흠진 수직 증발관에서 유동 및 열/물질 전달 해석 (Flow, Heat and Mass Transfer Analysis for Vertical Grooved Tube Evaporator)

  • 박일석;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.108-113
    • /
    • 1998
  • A numerical investigation for the flow, heat and mass transfer characteristics of the grooved evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation takes place at the free surface of the inside film. The 3-D transport equations for momentum and energy are solved by using the FVM(Finite Volume Method). The free surface shape is tracked by the moving grid technique satisfying the SCL(Space Conservation Rule). Due to the secondary motion of the fluid, the film thins at the crest, while thickens at the valley. The velocity and temperature fields as well as the amounts of the condensed and evaporated mass have been successfully predicted for various operating conditions and groove shapes.

  • PDF

MIT 요동 익형의 수치해석 : 비정상 유동 특성 (Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics)

  • 배상수;강동진;김재원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

MIT 요동 익형의 수치해석 (Numerical Simulation of MIT Flapping Foil Experiment)

  • 강동진;배상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.777-784
    • /
    • 2000
  • A Navier-Stokes code based on an unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number ${\kappa}-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for the whole experimental domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. The first harmonics of the velocity in the boundary layer shows local peak value inside the boundary layer and also local minimum near the edge of boundary layer. It is intensified as it develops along the blade surface. This is shown to be caused as the unsteadiness inside the boundary layer is being convected at a speed less than the free stream value. It is also shown that there is negligible mixing of the unsteadiness between the boundary layer and the free stream.