• 제목/요약/키워드: Finite Elements Methods

검색결과 327건 처리시간 0.039초

유한요소법의 정도수렴 (The Convergence of Accuracy Ratio in Finite Element Method)

  • 조순보
    • 한국공간구조학회논문집
    • /
    • 제3권2호
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF

지지단 보강재의 뒤틀림을 고려한 면내휨을 받는 탄성지지 보강판의 좌굴해석 (Buckling Analysis of Stiffened Plates with Elastic Supports Subjected to In-Plane Bending Moment Considering Warping of End Stiffeners)

  • 이용수
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.135-148
    • /
    • 1997
  • 본 논문은 면내휨을 받는 2변 탄성지지 2변 단순지지 보강장방형판에 대한 유한요소법을 이용하고, 비보강장방형판에 대해 고전적 해석법에 의해 좌굴해석한 것이다. 4변 단순지지, 2변 단순지지 및 2변 고정 장방형 판에 대해 기존해와 고전적 해석해 및 유한요소해을 비교하여 고전적 해석방법 및 유한요소법의 신뢰도를 입증하였다. 장방형 보강재의 뒤틀림 강성은 무시될 수 있으므로 탄성지지변의 보강재는 뒤틀림의 영향을 파악하기 위해 I형을 사용하였다. 탄성지지변을 갖는 장방형 판의 좌굴강도가 비틀림 강성 및 뒤틀림 강성에 따라 유한요소법 및 고전적 해석법에 의해 계산되고 비교되었다. 판의 지지변 사이에 보강재가 있는 경우 4변 단순지지, 2변 단순지지 및 2변 고정 보강장방형판에 대해 유한요소법에 의한 좌굴강도는 장방형판요소와 비틀림 및 뒤틀림을 고려한 보요소의 강성매트릭스를 조합하여 고유치 문제를 풀므로써 계산될 수 있다. 유한요소법에 의해 지지변 사이의 장방형 보강재 위치와 지지변 상의 I형 보강재의 비틀림(J) 및 뒤틀림 상수 (I/sub W/)에 따른 보강장방형판의 좌굴강도를 구하여 비교하고 효율적인 보강재의 위치를 결정하였다.

  • PDF

Computer Analysis of Non-vaulted Nef Unique System

  • Hong, Seong-Woo
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2000
  • Ever since Viollet-le-Due began to examine Gothic structural elements using his method of geometrical analysis in the nineteenth century, art and architectural historians and a few engineers have periodically attempted to ascertain the structural advantages of the various characteristic features of Gothic architecture. In none of these studies, however, has the way forces work within the lightweight and spacious masonry Gothic buildings been precisely interpreted. The approach taken by art and architectural historians has therefore tended to be primarily descriptive and to be based on intuitive assumptions. This study intend to analyze the Gothic non-vaulted nef unique(aisleless) structures of Lower Languedoc which has never been scientifically tested, and to provide as comprehensive an explanation as possible of the way in which these non-vaulted buildings work. In order to achieve this goal, this paper Is to examine, by means of finite element analysis. the links between the width of non-vaulted aisleless structures, the configuration of the arches, diaphragm arch, and the buttress. Finite element analysis with a computer provides a more accurate analysis than the methods of analysis that have been heretofore applied to Gothic structures, as well as permits us to visualize the global stress behavior of the structure. Combined with traditional methods of studying historical buildings, therefore, finite element analysis inevitably give us a broader understanding of the processes involved in the design and construction of medieval buildings.

  • PDF

Simple method for static and dynamic analyses of guyed towers

  • Meshmesha, H.;Sennah, K.;Kennedy, J.B.
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.635-649
    • /
    • 2006
  • The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석 (Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method)

  • 박병성;임장근
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2004
  • 최근, 유한요소해석견과의 신뢰도를 향상시키기 위하여 활발하게 연구되고 있는 적응유한요소해석은 반복계산을 통해서 해석결과의 오차가 사용자에 의해 지정된 허용오차와 같아지도록 하는 해석방법이다. 이와 간은 적응유한요소해석은 해석결과의 오차평가와 이에 따른 유한요소의 재구성과정으로 나누어진다. rp방법에서는 절점의 위치를 이동시켜 요소의 크기를 조절하는 r방법과 형상함수찻수를 증가시키는 p방법을 동시에 적용함으로써 적응해석의 유효성을 향상시키고자 하였다. 제안한 rp방법의 특성을 규명하고 적응해석의 유효성을 보이기 위하여 전형적인 이차원 평면문제들을 해석하고 그 결과를 검토하였다.

유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석 (Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;변정환;여동준
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.

R-P법에 의한 이차원 평면문제의 적응 유한요소 해석 (Adaptive Finite Element Analysis of 2-D Plane Problems Using the R-P version)

  • 정상욱;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.345-350
    • /
    • 2000
  • Adaptive finite element analysis, which its solution error meets with the user defined allowable error, is recently used far improving reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and another is the reconstruction of finite elements. In the rp-method, an element size is controlled by relocating of nodal positions(r-method) and the order of an element shape function is determined by the hierarchical polynomial(p-method) corresponding to the element solution error. In order to show the effectiveness and accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods. As a result of this study, following conclusions are obtained. (1) rp-method is more accurate and effective than the r- and p-method. (2) The solution convergency of the rp-method is controlled by means of the iterative calculation numbers of the r- and p- method each other.

  • PDF

Semi-analytical elastostatic analysis of two-dimensional domains with similar boundaries

  • Deeks, Andrew J.
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.99-118
    • /
    • 2002
  • The scaled-boundary finite element method is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one coordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) coordinate direction. These coordinate directions are defined by the geometry of the domain and a scaling centre. This paper presents a general development of the scaled boundary finite-element method for two-dimensional problems where two boundaries of the solution domain are similar. Unlike three-dimensional and axisymmetric problems of the same type, the use of logarithmic solutions of the weakened differential equations is found to be necessary. The accuracy and efficiency of the procedure is demonstrated through two examples. The first of these examples uses the standard finite element method to provide a comparable solution, while the second combines both solution techniques in a single analysis. One significant application of the new technique is the generation of transition super-elements requiring few degrees of freedom that can connect two regions of vastly different levels of discretisation.

Comparison of Force Calculation Methods in 2D and 3D Finite Element Method

  • Yan Xiuke;Koh, Chang-Seop;Ryu, Jae-Seop;Xie Dexin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권4호
    • /
    • pp.137-145
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method, are reviewed and the equivalence of them are theoretically proved. The methods are applied to the magnetic force calculation of 2D linear and nonlinear problems, and 3D nonlinear problem. As the results, the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF