• Title/Summary/Keyword: Finite Element Remesh

Search Result 6, Processing Time 0.023 seconds

A Study on the Large Deformation of Silicon Rubber Gasket with Hollow Circular Section (실리콘 중공 가스켓의 대변형에 관한 연구)

  • 이태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.150-157
    • /
    • 2003
  • In this paper, the large deformation of hollow silicon rubber gasket is treated. The frictional contact occurs between groove and the outer part of hollow gasket, and the frictional self-contact exists in the inner parts of hollow gasket. The silicon rubber has the nonlinear elastic behavior and its material property is approximately incompressible. Hence, the stress analysis requires an existence of a strain energy function, which is usually defined in terms of invariants or stretch ratio such as generalized Mooney-Rivlin and Ogden model. Considering large compressive deformation and friction, Mooney-Rivlin 3rd model and Coulomb's friction model are assumed. The numerical analysis is obtained by the commercial finite element program MARC. But, due to large deformation, the elements degenerate in the inner parts of hollow gasket. This means that the analysis of subsequent increments is carried out with a very poor mesh. In order to continue the analysis with a sufficient accuracy, it is necessary to use new finite element modeling by remesh. Experiments are also performed to show the validity of present method. As a conclusion, numerical results by this research have good agreements with experiments.

Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis (3차원 유한요소법을 이용한 교정용 마이크로임플란트 식립 시의 피질골 스트레인 해석)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2008
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) Into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.

A SIMPLE ALFORITHM FOR MAINTAINING ACJACENCY AND REMESHENG PROECSS IN DELAUNAY-VORONOII TRIANGULATION (들로네이-보로노이 삼각요소생성기법에 있어서 인접성유지와 요소재생성과정을 위한 단순알고리즘 연구)

  • 송영준
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.99-112
    • /
    • 1993
  • One of the characteristics of Delaunay-Voronoii methods of mesh generation is local remeshing ability in comparison with other methods, which is very useful in adaptive finite element applications. Main part of the process is to construct remeshing element group out of the whole elements and to remesh it. Adjacent element array, accompanied with an additional algorithm of several lines, is introduced to make the process simple so that implementation of the concept is possible at the level of general PC users.

  • PDF

Finite Element Analysis of Laser Class Bonding Process (레이저 유리 접합 공정의 유한요소해석)

  • Hong, Seok-Kwan;Kang, Jeong-Jin;Byun, Cheol-Woong
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.10-15
    • /
    • 2008
  • This study is aimed to analyse the laser glass bonding process numerically. Due to the viscoelastic behaviour of glass, the extremely large deformation of the frit seal is resulted continuously over the transition temperature, so that the thermal boundary condition be changed in the entire calculation process. The commercial FEM algorithm is restrictively able to remesh the large geometrical boundary shape and to adapt the boundary conditions simultaneously. According to our manual adaptation of increasing the laser line intensity to 700 mW/mm, it is possible to estimate the thermal glass bonding process under the fracture stress in principle. But it should be studied further in the case of high laser line intensity.

  • PDF

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant (Self-drilling 방식의 마이크로임플란트 식립에 의해 발생하는 피질골 스트레인의 유한요소해석)

  • Park, Jin-Seo;Yu, Won-Jae;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner. Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar. Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.

Shape Optimal Design by P-version of Finite Element Method (p-Version 유한요소법에 의한 형상 최적화설계)

  • Kim, Haeng Joon;Woo, Kwang Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.729-740
    • /
    • 1994
  • In the shape optimal design based on h-version of FEM, the ideal mesh for the initial geometry most probably will not be suitable for the final analysis. Thus, it is necessary to remesh the geometry of the model at each stage of optimization. However, the p-version of FEM appears to be a very attractive alternative for use in shape optimization. The main advantages are as follows; firstly, the elements are not sensitive to distortion for interpolation polynomials of order $p{\geq}3$; secondly, even singular problems can be solved more efficiently with p-version than with the h-version by proper mesh design; thirdly, the initial mesh design are identical. The 2-D p-version model for shape optimization is presented on the basis of Bezier's curve fitting, gradient projection method, and integrals of Legendre polynomials. The numerical results are performed by p-version software RASNA.

  • PDF