• 제목/요약/키워드: Finite Element Models

검색결과 2,542건 처리시간 0.03초

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권1호
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

A new method for infill equivalent strut width

  • Tabeshpour, Mohammad Reza;Arasteh, Arash Mahdipour
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.257-268
    • /
    • 2019
  • Infills are as important members in structural design as beams, columns and braces. They have significant effect on structural behavior. Because of lots of variables in infills like material non-linear behavior, the interaction between frames and infill, etc., the infills performance during an earthquake is complicated, so have led designers do not consider the effect of infills in designing the structure. However, the experimental studies revealed that the infills have the remarkable effect on structure behavior. As if these effects ignored, it might occur soft-story phenomena, torsion or short-column effects on the structures. One simple and appropriate method for considering the infills effects in analyzing, is replacing the infills with diagonal compression strut with the same performance of real infill, instead of designing the whole infill. Because of too many uncertainties, codes and researchers gave many expressions that were not as the same as the others. The major intent of this paper is calculation the width of this diagonal strut, which has the most characteristics of infill. This paper by comprehensive on different parameters like the modulus of young or moment of inertia of columns presents a new formula for achieving the equivalent strut width. In fact, this new formula is extracted from about 60 FEM analyses models. It can be said that this formula is very efficient and accurate in estimating the equivalent strut width, considering the large number of effective parameters relative to similar relationships provided by other researchers. In most cases, the results are so close to the values obtained by the FEM. In this formula, the effect of out of plane buckling is neglected and this formula is used just in steel structures. Also, the thickness of infill panel, and the lateral force applied to frame are constant. In addition, this new formula is just for modeling the lateral stiffness. Obtaining the nearest response in analyzing is important to the designers, so this new formula can help them to reach more accurate response among a lot of experimental equations proposed by researchers.

지반내 세립토 유동에 대한 수치해석적 연구 (Numerical Study on Fine Migration in Geo-materials)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제34권11호
    • /
    • pp.33-41
    • /
    • 2018
  • 지반의 내부침식은 유체 흐름에 의하여 입자골격에 부착된 세립토가 이탈하는 현상이며, 지속적인 세립토의 유동은 지반구조물의 수리-역학적 특성을 약화시킨다. 본 논문은 세립토의 유동에 관한 지배방정식을 정립하고 수치해석 기법을 제안하였다. 공극내의 세립토는 액상의 세립토($c_e$), 조립토에 부착된 입자(${\sigma}_a$) 그리고 조립토골격에 폐색된 세립토(${\sigma}_s$)로 구분하여 상관계를 제시하였다. 이를 바탕으로 세립토의 유동과 공극수의 흐름에 대한 수리학적 지배방정식들과 유한요소 수식화를 제시하였다. 세립토의 이탈, 부착 그리고 공극막힘에 대한 구성 모델들을 제시하였으며, 실내 1차원 침식실험으로부터 모델변수를 도출하는 방법을 제안하였다. 그리고 세립토의 공극 막힘 현상에 의한 지반의 투수계수 변화에 대한 추정식을 제안하였다. 기존의 침식실험 결과에 대한 수치해석을 통하여 개발된 해석기법과 세립토 유동 모델의 적정성을 검증하였다.

다수의 연마입자를 고려한 CMP 공정의 Stick-Slip 고찰 (Stick-slip in Chemical Mechanical Polishing Using Multi-Particle Simulation Models)

  • 정소영;성인하
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.279-283
    • /
    • 2018
  • In this study, we investigate the behavior of abrasive particles and change of the stick-slip pattern according to chemical mechanical polishing (CMP) process parameters when a large number of abrasive particles are fixed on a pad. The CMP process is simulated using the finite element method. In the simulation, the abrasive grains are composed of those used in the actual CMP process. Considering the cohesion of the abrasive grains with the start of the CMP process, abrasive particles with various sizes are fixed onto the pad at different intervals so that stick-slip could occur. In this analysis, we determine that when the abrasive particle size is relatively large, the stick-slip period does not change as the pressure increases while the moving speed is constant. However, if the size of the abrasive grains is relatively small, the amount of deformation of the grains increases due to the elasticity of the pad. Therefore, the stick-slip pattern may not be observed. As the number of abrasive particles increases, the stick-slip period and displacement decrease. This is consistent with the decrease in the von Mises yield stress value on the surface of the wafer as the number of abrasive grains increases. We determine that when the number of the abrasive grains increases, the polishing rate, and characteristics are improved, and scratches are reduced. Moreover, we establish that the period of stick-slip increases and the change of the stick-slip size was not large when the abrasive particle size was relatively small.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

DED 공정을 이용한 S45C 위 Hastelloy X 분말 적층 시 기저부 상과 경사각이 적층부 인근 열전달 특성에 미치는 영향에 관한 연구 (Influence of Substrate Phase and Inclination Angle on Heat Transfer Characteristics in Vicinity of Hastelloy X Regions Deposited on S45C via Directed Energy Deposition)

  • 백선호;이광규;안동규;김우성;이호진
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.27-37
    • /
    • 2021
  • The use of additive manufacturing processes for the repair and remanufacturing of mechanical parts has attracted considerable attention because of strict environmental regulations. Directed energy deposition (DED) is widely used to retrofit mechanical parts. In this study, finite element analyses (FEAs) were performed to investigate the influence of the substrate phase and inclination angle on the heat transfer characteristics in the vicinity of Hastelloy X regions deposited via DED. FE models that consider the bead size and hatch distance were designed. A volumetric heat source model with a Gaussian distribution in a plane was adopted as the heat flux model for DED. The substrate and the deposited powder were S45C structural steel and Hastelloy X, respectively. Temperature-dependent thermal properties were considered while performing the FEAs. The effects of the substrate phase and inclination angle on the temperature distributions and depth of the heat-affected zone (HAZ) in the vicinity of the deposited regions were examined. Furthermore, the influence of deposition paths on depths of the HAZ were investigated. The results of the analyses were used to determine the suitable phase and inclination angle of the substrate as well as the appropriate deposition path.

Force-based seismic design of steel haunch retrofit for RC frames

  • Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.133-148
    • /
    • 2021
  • The paper presents a simplified force-based seismic design procedure for the preliminary design of steel haunch retrofitting for the seismic upgrade of deficient RC frames. The procedure involved constructing a site-specific seismic design spectrum for the site, which is transformed into seismic base shear coefficient demand, using an applicable response modification factor, that defines base shear force for seismic analysis of the structure. Recent experimental campaign; involving shake table testing of ten (10), and quasi-static cyclic testing of two (02), 1:3 reduced scale RC frame models, carried out for the seismic performance assessment of both deficient and retrofitted structures has provided the basis to calculate retrofit-specific response modification factor Rretrofitted. The haunch retrofitting technique enhanced the structural stiffness, strength, and ductility, hence, increased the structural response modification factor, which is mainly dependent on the applied retrofit scheme. An additional retrofit effectiveness factor (ΩR) is proposed for the deficient structure's response modification factor Rdeficient, representing the retrofit effectiveness (ΩR=Rretrofitted /Rdeficient), to calculate components' moment and shear demands for the retrofitted structure. The experimental campaign revealed that regardless of the deficient structures' characteristics, the ΩR factor remains fairly the unchanged, which is encouraging to generalize the design procedure. Haunch configuration is finalized that avoid brittle hinging of beam-column joints and ensure ductile beam yielding. Example case study for the seismic retrofit designs of RC frames are presented, which were validated through equivalent lateral load analysis using elastic model and response history analysis of finite-element based inelastic model, showing reasonable performance of the proposed design procedure. The proposed design has the advantage to provide a seismic zone-specific design solution, and also, to suggest if any additional measure is required to enhance the strength/deformability of beams and columns.

IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구 (Study of IoT Module Package Design Optimization for Drop Testing by Drone)

  • 조은솔;김구성
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.63-67
    • /
    • 2021
  • 이번 논문에선 육안으로 확인하기 어려운 곳에 남아있는 불씨들을 효율적으로 감지하기 위해 CO2와 온도 변화를 감지하는 기능을 탑재한 잔불 감지용 IoT 모듈을 개발하여 이를 보호하는 패키지를 유한요소해석을 사용하여 최적화하였다. 개발된 모듈은 불씨의 특성을 고려하여 저전력 원거리 통신이 가능한 LoRa 기술을 적용하여 제작하였다. 제작된 모듈을 보호하기 위한 패키지 디자인을 고안하여 낙하 시 발생하는 응력에 대해 비교 분석하였다. 그 결과, Model C에서 가장 작은 응력이 발생하였다. 또한 패키지의 모듈 장착부분에 응력 집중이 예측된 타 모델들과 달리 날개 부분에서 응력이 집중 현상이 예측되어 내부 모듈을 보호하기에 적합하다 판단해 이를 적용한 패키지를 제작하였다.

철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가 (Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips)

  • 정새벽;정동혁
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.287-297
    • /
    • 2022
  • 본 논문에서는 철계형상기억합금(Fe SMA) 스트립으로 능동구속된 콘크리트 기둥의 실험적, 해석적 연구결과를 제시한다. Fe SMA과 탄소섬유보강시트(CFRP)로 각각 구속된 콘크리트 공시체의 압축실험을 통해 형상기억합금 기반 능동구속기법의 효과성을 평가하였다. 실험결과, Fe SMA 스트립으로 구속된 콘크리트 공시체가 낮은 구속력에도 불구하고 CFRP 시트로 구속된 공시체에 비해 더 우수한 변형능력을 가지는 것으로 밝혀졌다. 실험을 통해 얻은 구속된 콘크리트의 압축거동 결과를 이용해 소성힌지 영역이 각각 Fe SMA 스트립과 CFRP 시트로 보강된 콘크리트 기둥의 유한요소모델을 구축하였다. 기존 수행된 콘크리트 기둥의 수평반복가력 실험결과를 바탕으로 구축된 기둥 모델을 검증하였고, 각각의 기둥 모델에 대한 수평반복가력 해석을 수행하였다. 해석결과, Fe SMA 스트립으로 보강된 콘크리트 기둥이 CFRP 시트로 보강된 기둥모델에 비해 변형, 에너지 소산능력 향상에 효과적임을 확인하였다.