• 제목/요약/키워드: Finite Element Inverse Analysis

검색결과 139건 처리시간 0.027초

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

순환대칭으로 다중연결된 구조물의 유한요소 진동해석 (Finite Element Vibration Analysis of Multiply Interconnected Structure with Cyclic Symmetry)

  • 김창부;안종섭;심수섭
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.637-644
    • /
    • 1997
  • In this paper, a method of finite element analysis is presented for efficient calculation of vibration characteristics of not only simply interconnected structure with cyclic symmetry but also multiply interconnected structure with cyclic symmetry by using discrete Fourier trandform by means of a computer with small memory in a short time. Simply interconnected structure means it is composed of substructures which are adjacent themselves in circumferential direction. First, a mathematical model of multiply interconnected structure with cyclic symmetry is defined. The multiply interconnected structure is partitioned into substructures with the same goemetric configuration and constraint eqauations to be satisfied on connecting boundaries are defined. Nodal displacements and forces are transformed into complex forms through discrete Fourier transform and then finite element analysis is performed for just only a representative substructure. In free vibration analysis, natural frequencies of a whole structure can be obtained through a series of calculation for a substructure along the number of nodal diameter. And in forced vibration analysis, forced response of whole structure can be achieved by using inverse discrete Fourier transform of results which come from analysis for a substructure.

  • PDF

Material modeling of steel fiber reinforced concrete

  • Thomee, B.;Schikora, K.;Bletzinger, K.U.
    • Computers and Concrete
    • /
    • 제3권4호
    • /
    • pp.197-212
    • /
    • 2006
  • Modeling of physically non-linear behavior becomes more and more important for the analysis of SFRC structures in practical applications. From this point of view we will present an effective, three-dimensional constitutive model for SFRC, that is also easy to implement in commercial finite element programs. Additionally, the finite element analysis should only require standard material parameters which can be gained easily from conventional experiments or which are specified in appropriate building codes. Another important point is attaining the material parameters from experimental data. The procedures to determine the material parameters proposed in appropriate codes seem to be only approximations and are unsuitable for precise structural analysis. Therefore a finite element analysis of the test itself is used to get the material parameters. This process is also denoted as inverse analysis. The efficiency of the proposed constitutive model is demonstrated on the basis of numerical examples and their comparison to experimental results. In the framework of material parameter identification the idea of a new, indirect tension testing procedure, the "Modified Tension Test", is adopted and extended to an easy-to-carry-out tension test for steel fiber reinforced concrete specimens.

전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구 (A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump)

  • 최복록;박진무;김광은
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.

Back Analysis of Displacements Measured During Excavation of Underground Storage Caverns

  • Lee, Chung-In;Lee, Youn-Kyou;Kim, Chee-Hwan
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.83-98
    • /
    • 1996
  • 이 논문에서는 역순법 원리를 이용한 역해석 결과를 제시하였다. 국내에서 건설된 두 곳의 지하비축기지 공사 중에 계측한 자료를 이용하여 비축기지 진입터널 주위 암반의 변형계수와 초기 지압을 계산하였다. 역해석에서 얻어진 결과를 입력자를로 하여 유한요소해석을 수행하였으며 그 결과를 계측치와 비교, 검토하였다.

  • PDF

공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가 (The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness)

  • 김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구 (Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E)

  • 권기찬;윤성기
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

유한요소법을 이용한 사각단면 금형스프링의 초기 설계변수 예측 (Prediction of Initial Design Parameter of Rectangular Shaped Mold Spring Using Finite Element Method)

  • 이형욱
    • 소성∙가공
    • /
    • 제20권6호
    • /
    • pp.450-455
    • /
    • 2011
  • This paper presents an inverse design methodology for the cross section geometry of mold spring with a rectangular cross section as the starting material for a coiling process. The cross-sections of mold springs are universally rectangular, as the parallel sides minimize the possibility of failure under high service loads. Pre-coiled wires are initially designed to have a trapezoidal cross section, which becomes a rectangle by the coiling process. This study demonstrates a numerical exercise to predict changes in the sectional geometry in spring manufacture and to obtain the initial cross section which becomes the exact rectangle desired from the manufacturing process. Finite element analysis was carried out to calculate the sectional changes for various mold springs. Geometrical parameters were the widths at inner and outer radii, the inner and the outer corner radii, and the height. A partial least square regression analysis was carried out to find the main contributing factors for deciding initial design values. The height and the width mainly affected various initial parameters. The initial width at the inner radius was mostly affected by various specification parameters.

Analysis of the effect of aged concrete layer on RC beams, and a strengthening method employing carbon-fiber-reinforced polymer (CFRP) sheets.

  • Liana Satlykova;Young Sook Roh
    • Architectural research
    • /
    • 제26권2호
    • /
    • pp.31-39
    • /
    • 2024
  • The numerical study focuses on the analysis of the structural behavior of concrete beams containing outdated concrete and offers an innovative method of strengthening them using carbon-fiber-reinforced polymer sheets (CFRP). The focus is on modeling and analyzing the performance of aged concrete beams strengthened by CFRP in the flexural direction. This study presents an ultimate load model for CFRP-strengthened RC beams featuring outdated concrete layers. Validation through four-point bending tests and finite element modeling demonstrated the efficacy of the model. Findings indicate that CFRP sheets significantly enhance beam strength, particularly in structures with outdated concrete layers, resulting in increased ultimate load capacity. Moreover, an inverse relationship between ultimate load and concrete layer height was observed, with the CFS-21-15-30 sample exhibiting the most substantial reduction. Validation of the model was achieved using finite element analysis con-ducted in Abaqus software.

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.