• 제목/요약/키워드: Finite Element Analysis Method

검색결과 9,734건 처리시간 0.039초

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF

스펙트럴유한요소법을 이용한 네 변이 단순지지 된 직사각형평판의 진동해석 (Analysis of Simply Supported Rectangular Plate Using Spectral Finite Element Method)

  • 주경림;홍석윤;송지훈;김동진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.85-89
    • /
    • 2005
  • For the analysis of a vibrating two dimensional structure such as the simply supported rectangular plate, Spectral Finite Element Method (SFEM) has been studied. Under the condition that two parallel edges are simply supported at least and the other two edges can be arbitrary, Spectral Finite Element has been developed. Using this element SFEM is applied to the vibrating rectangular plate which all edges are simply supported, and obtain the frequency response function in frequency domain and the dynamic response in time domain. To evaluate these results normal mode method and finite element method (FEM) are also accomplished and compared. It is seen that SFEM is more powerful analysis tool than FEM in high frequency range.

  • PDF

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법 (Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem)

  • 송명관
    • 한국지반신소재학회논문집
    • /
    • 제20권3호
    • /
    • pp.11-20
    • /
    • 2021
  • 본 논문에서는 유한요소법과 경계요소법을 결합하여 기하학적으로 급변 부위가 있는 이차원 탄성 정적 문제에 대하여 효율적이고 정확한 해석 결과를 얻기 위한 유한요소법과 경계요소법의 근사 결합 방법을 제시한다. 이차원 문제의 유한요소로서는 3절점, 4절점 평면응력 요소를 적용하고, 이차원 문제의 경계요소로는 3절점 경계요소를 적용한다. 모델링 단계에서는 우선 전체 해석 대상을 유한요소로 모델링한 후에 기학학적 급변 부위를 경계요소로 모델링 하는데, 유한요소의 모델링을 위하여 정의된 절점을 이용하여 경계요소를 정의한다. 해석 단계에서는 전체 해석 대상에 대하여 유한요소 해석을 우선적으로 수행하고, 이후에 경계요소 해석을 자동으로 수행하는데, 경계부에서의 경계조건은 유한요소 해석 결과인 변위 조건과 응력 조건을 적용한다. 수치예제로서 이차원 탄성 정적 문제인 균열이 있는 평판에 대한 해석 결과를 제시하고 고찰한다.

유한요소-전달강성계수법에 의한 2차원 곡선 보 구조물의 정적해석 (Static Analysis of Two Dimensional Curbed Beam Structure by Finite Element-Transfer Stiffness Coefficent Method)

  • 최명수
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.40-45
    • /
    • 2017
  • The objective of this study is the finite element-transfer stiffness coefficient method, which is the combination of the modeling technique of finite element method and the transfer technique of transfer stiffness coefficient method, is applied in the static analyses of two dimensional curved beam structures. To confirm the effectiveness of the applied method, two computational models are selected and analyzed by using finite element method, finite element-transfer stiffness coefficient method and exact solution. The computational results of the static analyses for two computational models using finite element-transfer stiffness coefficient method are equal to those using finite element method. When the element partition number of curved beam structure is increased, the computational results of the static analyses using both methods approach the exact solution. We confirmed that the finite element-transfer stiffness coefficient method is superior to finite element method when the number of the curved beam elements is increased from the viewpoints of the computational speed and the utility of computer memory.

유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석 (Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method)

  • 조재혁;김현욱;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가 (The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures)

  • 한상을;이상주;조준영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석 (Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element)

  • 최명수;문덕홍
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

치아교정의 역학적 해석을 의한 유한요소 모델링 및 치아의 거동해석 (Finite Element Modeling and Mechanical Analysis of Orthodontics)

  • 허경헌;차경석;주진원
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.907-915
    • /
    • 2000
  • The movement of teeth and initial stress associated with the treatment of orthodontics have been successfully studied using the finite element method. To reduce the effort in preprocessing of finite element analysis, we developed two types of three-dimensional finite element models based on the standard teeth model. Individual malocclusions were incorporated in the finite element The movement of teeth and initial stress associated with the treatment of orthodontics have been successfully studied using the finite element method. To reduce the effort in preprocessing of finite element analysis, we developed two types of three-dimensional finite element models based on the standard teeth model. Individual malocclusions were incorporated in the finite element models by considering the measuring factors such as angulation, crown inclination, rotation and translations. The finite element analysis for the wire activation with a T-loop arch wire was carried out. Mechanical behavior on the movement and the initial stress for the malocclusion finite element model was shown to agree with the objectives of the actual treatment. Finite element models and procedures of analysis developed in this study would be suitably utilized for the design of initial shape of the wire and determination of activation displacements.

대변형 유한요소해석을 위한 요소망 자동 생성기법 (Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.