• Title/Summary/Keyword: Finite Element Analysis(FEA)

Search Result 1,115, Processing Time 0.024 seconds

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

Dynamic Characteristic Analysis and Position Control for High Density Optical Head Using Bimorph PZT (고밀도 광학헤드를 위한 Bimorph 압전 액추에이터의 동특성 해석 및 위치제어)

  • Park, Tae-Wook;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Kwon, Young-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.12-19
    • /
    • 2005
  • This paper proposed a dual actuator using Bimorph PZT for information storage device based on prove array NSOM(near-field scanning optical microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual Bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(finite element analysis), and compared with experimental results. Different control algorithms were used for two Bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.

Comparative Analysis of Magnetic Slot Wedges Design for Increasing Performance of Railway Traction Motor

  • Liu, Huai-Cong;Cho, Sooyoung;Hong, Hyun-Seok;Joo, Kyoung-Jin;Ham, Sang-Hwan;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2411-2418
    • /
    • 2017
  • This study focuses on the effects of using open stator slots in an interior permanent magnet traction motor with a magnetic slot wedge design in order to increase the power density at its base speed. In addition, such a configuration reduces the torque ripple under field-weakening conditions. Five different wedge models were selected, each of which was evaluated using a finite element analysis (FEA). Based on the initial model, we designed magnetic slot wedges for maximum back-EMF and minimum cogging torque. In addition, the d-q axis inductance was slightly altered due to the magnetic slot wedges. Finally, we analyzed the performance of a traction machine under field weakening control. Moreover, we have outlined the requirements for an ideal magnetic slot wedge design.

Steeraxle Casting Beam Design of Forklift Truck by Fatigue Life Analysis (피로수명해석에 의한 지게차용 후차축 주물빔 설계)

  • Park, Jin-Hong;Koo, Jae-Mean;Lee, Oh-Young;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1309-1315
    • /
    • 2011
  • The design process for obtaining the reliable steeraxle casting beam of fork lift truck is studied in this paper, as the casting beam is major component of steeraxle which has a steering function at driving. In this study, the driving mode and damage pattern of casting beam which could be occurred from the customer site were analyzed and it established the design process to predict the fatigue life by FEA(Finite Element Analysis) so that the reliability of steeraxle casting beam could be verified at DVT(Design Validation Test) mode. This paper provides guidance on the process of designing the reliable steeraxle casting beam at the initial design stage and also, provides guidance on the process of solving the problem when the failure is occurred in the field.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

Optimal Design of the Composite Hat-shaped Stiffeners for Simplified Wing Box with Embedded Array Antenna (어레이 안테나 장착을 위한 단순화된 주익 구조의 복합재 모자형 보강재 최적설계)

  • Park, Sunghyun;Kim, In-Gul;Lee, Seokje;Jun, Oo-Chul
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.224-229
    • /
    • 2012
  • The structural performance is degraded in case of embedding the array antenna for reconnaissance and surveillance into the wing skin structures. In this paper, the optimal design for the thickness of composite hat-shaped stiffener which is reinforced embedded array antenna on the simplified composite wing box was conducted. To select the basic shape of hat-shaped stiffener, structural analysis was carry out using the commercial finite element analysis program while changing the web slope and flange length of hat-shaped stiffener. The optimal thickness of the composite hat-shaped stiffeners was determined by using commercial optimization program such as VisualDOC and commercial FEA program with considering stresses and buckling constraints.

Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips (플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter (전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System (광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석)

  • Gimm, Hak In;Nam, Byoung Uk;Kim, Gwang Tae;Kim, Byung Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.