• Title/Summary/Keyword: Finite Difference Method(FDM)

Search Result 190, Processing Time 0.025 seconds

Numerical Analysis on the Die Pad/Epoxy Molding Compound(EMC) Interface Delamination in Plastic Packages under Thermal and Vapor Pressure Loadings

  • Jin Yu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.37-48
    • /
    • 1998
  • The popcorn cracking phenomena in plastic IC packages during reflow soldering are investigated by considering the heat transfer and moisture diffusion through the epoxy molding compound(EMC) along with the mechanics of interface delamination. Heat transfer and moisture diffusion through EMC under die pad are analyzed by finite difference method (FDM)during the pre-conditioning and subsequent reflow soldiering pro-cess and the amounts of moisture mass and vapor pressure at delaminated die pad/ EMC interface are calculated as a function of the reflow soldering time. The energy release rate stress intensity factor and phase angle were obtained under various loading conditions which are thermal crack face vapor pressure and mixed loadings. It was shown that thermal loading was the main driving force for the crack propagation for small crack lengths but vapor pressure loading played more significant role as crack grew.

Estimation of Preceding Displacement at Tunnel Excavation by NATM (NATM 시공에 의한 터널 굴착시 선행변위 추정에 관한 연구)

  • 신동오;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.87-95
    • /
    • 1998
  • Field instrumentation and numerical analysis by the finite difference method were applied to estimate the relaxed zone in a subway tunnel of shallow depth in soft rock, excavated by NATM. The convergence and ground displacement can be used to estimate the deformation behavior and the relaxed zone. Parameters for the several models previously suggested were measured using regression analysis techniques adopting a function of time and the face advance. The estimated relaxed zone by the MPBX and FDM analysis were 1.5~3.0 m and 1.5~2.0 m, respectively. It was concluded that the visco-elastic model and the time-dependent elasto-plastic model correlate very well ($r^2$>0.9) with results of the numerical analyses.

  • PDF

An analysis of the thermal behaviour on the spindle system for machine tools (공작기계용 주축계에 관한 열적거동 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.90-97
    • /
    • 1996
  • The thermal deformation of a machine tool spindle influences the performance of the manufacturing systems for precision products. In this research, thermal analysis of a high speed machine tool spindle with the rolling bearing and the built-in motor is carried out by using Finite Difference Method. The thermal boundary conditions describing the heat generation in the bearing and built-in motor are considered in the simulation. And various convective boundary conditions are assumed with the empirical formula in the references. From the simulation results, the characteristics of each element affecting the dynamic thermal behaviour of the machine tool spindle system have been clarified. Therefore, this model can be well applied to the future development of the high speed spindle systems.

  • PDF

A Study on the Propagation Characteristics in Double Metal Strip Waveguides (이중 금속선 곡선형 도파로에서의 전파특성에 관한 연구)

  • Lee, Sang-Jun;Kim, Sang-In;Song, Seok-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.226-231
    • /
    • 2007
  • In this paper, we analyze the characteristics of various curved waveguides composed of double metal strips using finite difference method (FDM). Our investigation reveals that the bending loss of the double metal strip waveguide can be improved with less degradation of the straight waveguide's propagation loss compared to the single metal strip structure. Optimization of the double metal strip waveguide structure has been conducted considering bending and propagation losses.

Comparison of Models and Numerical Analysis Methods in Fluid Simulation of High Density Inductively Coupled Plasma Sources (고밀도 유도결합 플라즈마원 유체 수송 시뮬레이션을 위한 모델 및 수치해석 방법 비교)

  • 권득철;윤남식;김정형;신용현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.433-442
    • /
    • 2004
  • Various models and various boundary conditions have been suggested for fluid transport simulations of high density plasma discharges such as the inductively coupled plasma discharge. In this work, we compare the various models using one-dimensional simulations based on the FDM(finite difference method), the upwind scheme, the power-law scheme, and the dielectric relaxation scheme[l] Comparing the exactness, the numerical stability and the efficiency of the various models. the most adoptable model is suggested.

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 걸음세 변화에 관한 최적화 연구)

  • Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2405-2407
    • /
    • 2003
  • This study deals with the gait optimization of via points on biped robot. ZMP(Zero Moment Point) is most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, legs's trajectory and a desired ZMP trajectory is required, balancing weight's movement is solved by FDM(Finite Difference Method). In this study, optimal index is defined to dynamically static walking of a biped robot, and optimization of via points is applied by GA(Genetic Algorithm).

  • PDF

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 최적 걸음새에 관한 연구)

  • 공정식;노경곤;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.115-123
    • /
    • 2004
  • This paper deals with the gait optimization of via points on biped robot. ZMP(Zero Moment point) is the most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, leg's trajectory and a desired ZMP trajectory is required, balancing motion is solved by FDM(Finite Difference Method). In this paper, optimal index is defined to dynamically stable walking of a biped robot, and genetic algorithm is applied to optimize gait trajectory and balancing motion of a biped robot. By genetic algorithm, the index of walking parameter is efficiently optimized, and dynamic walking stability is verified by ZMP verification equation. Genetic algorithm is only applied to balancing motion, and is totally applied to whole trajectory. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Optimization of GaAs/AIGaAs depleted optical thyristor structure for lower depletion voltage (Depleted Optical Thyristor의 공핍전압에 관한 연구)

  • Choi, Woon-Kyung;Kim, Doo-Geun;Choi, Young-Wan;Lee, Seok;Woo, Duk-Ha;Byun, Young-Tae;Kim, Jae-Heon;Kim, Sun-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.220-221
    • /
    • 2003
  • We optimized the structure of a fully depleted optical thyristor (DOT) to achieve the faster switching speed and the lower power consumption by the depletion of charge at the lower negative voltage. The fabricated optical thyristor shows sufficient nonlinear s-shape I-V characteristics with the switching voltage of 2.85 V and the complete depletion voltage of -8.73 V. In this paper, using a finite difference method (FDM), we calculate the effects of parameters such as doping concentration and thickness of each layer to determine the optimized structure in the view of the fast and low-power-consuming operation.

  • PDF

A Numerical Experiment of Tide Changes due to the Development of Land Reclamation near the Youngsan River (영산강지구 대단위간척지 개발로 인한 조석변화에 대한 수치실험)

  • Lee, J.W.;Shin, S.H.
    • Journal of Korean Port Research
    • /
    • v.5 no.2
    • /
    • pp.65-75
    • /
    • 1991
  • Tidal current and water level change in coastal waters are formulated in terms of mathematical models. A systematic discussion of the derivation of a set of governing equations, expressing conservation of mass and momentum is presented. A simplification is introduced by integrating all variables and equations over the total water depth, the Solution of the formulated problem is achieved by using the finite difference method(FDM). The applied study area is taken from Mokpo harbor and its adjacent coastal water which have significant hydrographical changes due to the construction of the estuary barrage and land reclamation work of estuary barren. Some comparisons with the observed current and water level changes the numerical solutions are found to be considerably fit well for the recent coastal water motion.

  • PDF

A Fundamental Study for the Numerical Simulation Method of Green Water Occurrence on Bow Deck (선수부 갑판침입수의 수치시뮬레이션에 대한 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Kim, Nam-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Green water load is an important parameter to be considered in designing a modern ship or offshore structures like FPSO and FSRU. In this research, a numerical simulation method for green water phenomenon is introduced. The Navier-Stokes equations and the continuity equation are used as governing equations. The equations are calculated using Finite Difference Method(FDM) in rectangular staggered grid system. To increase the numerical accuracy near the body, the Cartesian cut cell method is employed. The nonlinear free-surface during green water incident is defined by Marker-density method. The green waters on a box in regular waves are simulated. The simulation results are compared with other experimental and computational results for verification. To check the applicability to moving ship, the green water of the ship which is towed by uniform force in regular wave, is simulated. The ship is set free to heave and to surge.