• 제목/요약/키워드: Finite Element Analysis Force

검색결과 1,994건 처리시간 0.025초

유한요소해석을 통한 드로우비드 저항력의 예측 및 평가 (Prediction and Evaluation of Drawbead Restraining Force with Finite Element Analysis)

  • 배기현;송정한;김세호;김동진;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2005
  • The drawbead is used to control the material flow into the die and increase the forming quality during the binder wrap process and the stamping process in the sheet metal forming. Drawbead restraining force (DBRF) is controlled by geometrical parameters and influenced by process parameters such as friction coefficient and blank thickness. In order to inspect the effect of process parameters, parameter studies are performed with the variation of parameters using finite element model of drawbead which is utilized reliably for the calculation of the drawbead restraining force. Drawbead analysis is carried out with 2-D plane-strain element and 3-D shell element. After the verification of the accuracy of the drawbead model with 3-D shell element, it is utilized to the prediction and the investigation of the effect of process parameters. The result of parameter studies can be utilized to the die design in the tryout stage.

  • PDF

가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석 (Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • 제14권4호
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석 (Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine)

  • 조남효;이상업;이상규;이상헌
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구 (The Influence of the Number of Drawbead on Blank Forming Analysis)

  • 정동원;이상제
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

Nonlinear Finite Element Analysis of Composite Shell Under Impact

  • Cho, Chong-Du;Zhao, Gui-Ping;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.666-674
    • /
    • 2000
  • Large deflection dynamic responses of laminated composite cylindrical shells under impact are analyzed by the geometrically nonlinear finite element method based on a generalized Sander's shell theory with the first order transverse shear deformation and the von-Karman large deflection assumption. A modified indentation law with inelastic indentation is employed for the contact force. The nonlinear finite element equations of motion of shell and an impactor along with the contact laws are solved numerically using Newmark's time marching integration scheme in conjunction with Akay type successive iteration in each step. The ply failure region of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical results, including the contact force histories, deflections and strains are presented and compared with the ones by linear analysis. The effect of the radius of curvature on the composite shell behaviors is investigated and discussed.

  • PDF

유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구 (A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

유한요소해석을 이용한 3축 힘 촉각센서 설계 및 해석 (Design and analysis of tactile sensor for tri-axial force measurement using FEM)

  • 조운기;김종호;강대임;이억섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.865-870
    • /
    • 2001
  • A sensing element for tri-axial force measurement, unit sensor of tactile sensor, was designed and evaluated by using finite element method (ANSYS). The sensor has a maximum force range of ${\pm}10$ N in the x, y, and z direction. Optimal cell structures and piezoresistor positions were determined by the strain distribution obtained from finite element analysis. Finally three Wheatstone birdge circuits were arranged and verified by $F_x$, $F_y$, and $F_z$ loading conditions. In addition, in case of sensing element subjected to thermal loading, the outputs of three bridge circuits were also evaluated.

  • PDF

드로우비드 전문모델에 관한 연구 (Study on the Drawbead Expert Models)

  • 김준환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.26-29
    • /
    • 2000
  • drawbead expert models are developed for calculating drawbead restraining force and drawbead-exit thinnings which are boundary conditions in FEM stamping simulation employing the linear multiple regression method by which the deviation of drawing characteristics between drawing test and mathematical model is minimized. In order to show the efficiency and accuracy of an expert drawbead model a finite element simulation of auto-body panel stamping is carried out. The finite element simulation shows that the expert drawbead model provides the accurate solution guarantees the stable convergence and the merit in the computation time.

  • PDF

47ton 굴삭기 주행모터 기어 캐리어의 구조해석에 관한 연구 (A study on Structure Analysis about 47ton Excavator Drive Motor Gear carrier)

  • 정일중;이상훈;이석순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.724-729
    • /
    • 2007
  • The study is a structure analysis by applying the output torque and tangential force on 47 ton excavator drive motor gear carrier. The finite element analysis for 3D model is performed by ABAQUS/Standard. We made an estimate by evaluating the results of the finite element analysis.

  • PDF