• Title/Summary/Keyword: Finite Element Analysis Force

Search Result 1,994, Processing Time 0.026 seconds

Finite Element Analysis of Adhesive Contact of Torus-Shaped Bumps (토러스형 돌기의 흡착접촉 유한요소해석)

  • 조성산;양승민
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 2002
  • Adhesive contact characteristics of torus-shaped bumps were analyzed using the finite element technique considering the adhesive force. Analyses focused on the effect of rim and bump radii on the adhesive contact behavior such as the jump-to-contact behavior, adhesion hysteresis, pull-off forces, contact region and pressure, and surface and subsurface stresses. Analysis results in the absence of adhesive force were also included to examine the effect of adhesive force. The applicability of torus-shaped bumps to the MEMS structure for reduction of friction is discussed.

A Study for the Prediction of a Tire Cornering Characteristics using a Finite Element Method (유한요소법을 이용한 타이어 코너링특성 예측에 관한 연구)

  • 김항우;조규종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.151-162
    • /
    • 1998
  • During a straight driving and cornering maneuver by a vehicle various forces and moments are exerted on the tire's footprint. A cornering properties, handling and stability performances of vehicle can be predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted using a finite element method. Contact area of the tire between bead and wheel are fixed to simplify of a finite element model. Lateral force is exerted on the rigid surface as a real load with Coulum friction after inflate and load vertically. Then, rotate the tire's axle to simulate a free rolling untill taken the equilibrium of a aligning torque. Also, experimental observations are made to test a reliability of a FE analysis conducted in this study. The finite element analysis said that good agreement was obtained with experimental results of these cornering properties, giving confidence within about one percent. So it os recommended that a finite element analysis can be used as a good tool to predicted the tire cornering properties.

  • PDF

Finite Element Analysis of a Cold Forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 류찬호;전만수
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Finite Element Analysis on Impedance Parameters of Anchor Plate of Structural Cables Under Cable Force Changes (구조용 케이블의 장력 변화에 따른 정착부의 임피던스 특성에 대한 유한요소해석)

  • Nguyen, Khac-Duy;Park, Jae-Hyung;Hong, Dong-Soo;Lee, Ju-Won;Kim, Jeong-Tae;Na, Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.783-786
    • /
    • 2010
  • This paper presents a finite element analysis on impedance parameters of anchor plates of structural cables under the change in cable forces. To achieve the objective, four approaches are implemented as follows: Firstly, theoretical background of electro-mechanical impedance is described. Secondly, anchor plates of structural cables are selected to experimentally examine the relationship between impedance parameters and cable force changes. Thirdly, finite element analysis is performed to verify the experimental results. Fourthly, a comparison between the experimental and numerical analysis on impedance parameters of anchor plate of structural cables under cable force changes is carried out.

  • PDF

Finite Element Analysis of Residual Stress by Cold Expansion Method with Clamping Force in the Plate having Adjacent Holes (인접홀에서 홀확장법과 체결력 고려시, 발생하는 잔류응력 분포에 대한 유한요소해석)

  • Yang Won-Ho;Cho Myoung-Rae;Jang Jae-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.149-154
    • /
    • 2006
  • The cold expansion method (CEM) is one of the widely used a method to improve the fatigue behavior of materials in aerospace industry. Such improvement is due to the compressive residual stress developed when a tapered mandrel goes through the fastener holes a little smaller than the mandrel. CEM is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Many researchers are studied a finite element analysis of residual stress around fastener hole. But in case of real model, fastener hole has a clamping force after CE. Therefore, it is respected that residual stress distributions should be changed due to clamping forces. In this paper, it was performed finite element analysis of residual stress by clamping force after CE in the plate having adjacent holes. From this study, it has been found that compressive residual stress near the hole increases according to clamping force. Also, the more increase clamping force, the more increases compressive residual stress. However, tensile residual stress increase beyond clamping force area.

Behavior of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.379-386
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The calculation model adopted by the NCMA guideline, however, appears to compare better with the results of finite element analysis as well as field survey than the FHWA guideline. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF

Finite Element Analysis of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동에 관한 유한요소해석)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.101-108
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The results demonstrated that there exist critical stiffness and length of reinforcement beyond which further increase would not contribute to additional reinforcing effect. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (유한요소법을 이용한 고속응답 솔레노이드 밸브의 거동해석)

  • Kwon, Ki-Tae;Han, Hwa-Taik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.927-932
    • /
    • 2001
  • It is intended to develope an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

  • PDF

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석)

  • Kweon, Gi-Tae;Han, Hwa-Taik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.