• Title/Summary/Keyword: Finite Element

Search Result 22,259, Processing Time 0.046 seconds

Analytical Study on Vibrational Properties of High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트의 진동 특성에 관한 해석적 연구)

  • Kim, Jeong-Jin;Kim, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.119-125
    • /
    • 2020
  • Research on high-attenuation concrete for the vibration reduction performance by mixing epoxy-based synthetic resins and aggregates is actively being conducted. The curing time of high-attenuation concrete is very short because water is not used, and the physical and dynamic properties are very excellent. therefore, it is expected to be widely used in building structures requiring reduction of interior-floor noise and vibration. Furthermore, A way to expand the applicability of the high-damping concrete mixed with polymer in the field of reinforcement material have been variously studied. In order to replace polymer concrete with ordirnary concrete and existing anti-vibration reinforcement material, it is necessary to review overall vibration reduction performance considering physical properties, dynamic properties, productivity and field applicability. In this study, the physical and dynamic properties of polymer concrete by epoxy mixing ratio compared with ordirnary concrete. As a result, the elastic modulus was similar. On the other hand, polymer concrete for the compressive, tensile, and flexural strengths was quite more excellent. In particular, the measured tensile strength of polymer concrete was 4-10 times higher than that of ordirnary concrete. it was a big difference, and the frequency response function and damping ratio was studied through modal test and finite element analysis model. The dynamic stiffness of polymer concrete was 20% greater than that of ordirnary concrete, and the damping ratio of polymer concrete was approximately 3 times more than that of ordirnary concrete.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Analysis of Ultimate Rockfall Energy Resistance of CFT Rock Shed Main Frame (CFT 피암터널 주구조체의 극한 낙석에너지 저항능력 분석)

  • Moon, Jiho;Lee, Juho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Rock sheds are a type of rockfall protection facility that is installed on the road near steep slopes, where large amount of rockfall is expected. Rock sheds are generally designed to resist approximately 200 kJ to 3,000 kJ of rockfall energy. In a previous study, a new type rock shed structure having a concrete-filled tube (CFT) main frame was proposed. By using CFT as the main frame in a rock shed, rapid construction is possible. Additionally, high load carrying capacity and ductility can be achieved. The behavior of the proposed rock shed structure was studied via elastic analysis with the equivalent static load of rockfall energy as in a previous study. However, it is necessary to investigate the behavior of the proposed rock shed in more detail with a full 3D finite element (FE) model considering realistic rockfall load. The FE model for the CFT rock shed main frame was developed first in this study. Then, the resistance of the CFT rock shed main frame Under ultimate rockfall energy was investigated.

Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder (72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석)

  • Mai, Viet-Chinh;Han, Sang Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.73-82
    • /
    • 2022
  • The study presents a three-dimensional approach to simulate the nonlinear behavior of a 72 m long Ultra High Performance Fiber Reinforced Concrete (UHPFRC) pre-stressed box girder for a pedestrian bridge in Busan, South Korea. The concrete damage plasticity (CDP) model is adopted to model the non-linear behavior of the UHPFRC material, in which the material properties are obtained from uniaxial compressive and tensile tests. The simulation model based on the proposed stress-strain curve is validated by the results of four-point bending model tests of a 50 m UHPFRC pre-stressed box girder. The results from the simulation models agree with the experimental observations and predict the flexural behavior of the 50 m UHPFRC pre-stressed box girder accurately. Afterward, the validated model is utilized to investigate the flexural behavior of the 72 m UHPFRC pre-stressed box girder. Here, the load-deflection curve, stress status of the girder at various load levels, and connection details is analyzed. The load-deflection curve is also compared with design load to demonstrate the great benefit of the slender UHPFRC box girder. The obtained results demonstrate the applicability of the nonlinear finite element method as an appropriate option to analyze the flexural behavior of pre-stressed long-span girders.

Numerical Analysis on the Influence Factors of Cavity Occurrence in the Stability of the Underground with Cavity (도로 하부지반에서 발생된 공동이 지반 안정성에 미치는 영향에 관한 수치해석)

  • Nam, Jun-Hee;Kim, Jong-Chul;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, finite element numerical analysis was performed considering various influence factors(cavity shape and size, pavement thickness and size of traffic load) in order to analyze the impact factors in the underground of the road where the cavity occurred and to evaluate the stability of the ground. In order to verify the reliability of the numerical analysis method applied in this study and the results it was compared and analyzed with the results of previous studies and field measurements. The correlation between the influence factors was analyzed through the distribution of vertical displacement obtained from the numerical analysis results, the distribution of surface settlement and surface settlement, the distribution of the stress ratio, and the distribution of the safety factor. As a result, it was confirmed that as the size of the cavity and traffic load increased and the thickness of the pavement decreased, the vertical displacement and surface settlement at the top of the cavity increased. Also, the shape of the cavity was square, the stability of the ground was significantly reduced compared to the case of a circular cavity. Through these results, it was possible to confirm the overall stability of the lower ground of the road where the cavity was generated.

A Study on the Application of UBC3D-PLM for Soil Liquefaction Analysis (액상화 해석을 위한 UBC3D-PLM의 적용성에 관한 연구)

  • Park, Eon-Sang;Kim, Byung-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, a model parameter evaluation method using relative density was proposed to utilize applicable UBC3D-PLM for liquefaction behavior. In addition, dynamic effective stress analysis, that is, liquefaction analysis, was performed on the case of the liquefaction occurrence region where acceleration and pore water pressure were measured, and compared with the actual measurement and the existing Finn analysis results. Through this study, it was found that the proposed method can easily evaluate the necessary parameters required by the related model and predict the pore water pressure behavior in the region where liquefaction occurs. In addition, in the case of the study area, both measurements and numerical analysis showed that liquefaction occurred when a certain amount of time elapsed after the earthquake acceleration reached the maximum value. In the case of UBC3D-PLM applied in this study, the excess pore water pressure behavior similar to the actual measurement was predicted, and the occurrence of liquefaction was evaluated in the same way as the actual measurement. In particular, although the excess pore water pressure in the sand layer was greater, the phenomenon in which liquefaction occurred in the silt layer was accurately realized. It is expected that the proposed model parameter evaluation method and finite element analysis applying UBC3D-PLM can be used to select the liquefaction reinforcement region in the future seismic design and reinforcement by evaluating the liquefaction occurrence region similarly to the real one.

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Thickness Design of Composite Pavement for Heavy-Duty Roads Considering Cumulative Fatigue Damage in Roller-Compacted Concrete Base (롤러전압콘크리트 기층의 누적피로손상을 고려한 중하중 도로의 복합포장 두께 설계)

  • Kim, Kyoung Su;Kim, Young Kyu;Chhay, Lyhour;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.537-548
    • /
    • 2022
  • It is important to design the pavement thickness considering heavy-duty traffic loads, which can cause excessive stress and strain in the pavement. Port-rear roads and industrial roads have many problems due to early stress in pavement because these have a higher ratio of heavy loads than general roads such as national roads and expressways. Internationally, composite pavement has been widely applied in pavement designs in heavy-duty areas. Composite pavement is established as an economic pavement type that can increase the design life by nearly double compared to that of existing pavement while also decreasing maintenance and user costs. This study suggests a thickness design method for composite pavement using roller-compacted concrete as a base material to ensure long-term serviceability in heavy-duty areas such as port-rear roads and industrial roads. A three-dimensional finite element analysis was conducted to investigate the mechanical behavior and the long-term pavement performance ultimately to suggest a thickness design method that considers changes in the material properties of the roller-compacted concrete (RCC) base layer. In addition, this study presents a user-friendly catalog design method for RCC-base composite pavement considering the concept of linear damage accumulation for each container trailer depending on the season.

Fatigue Reliability Evaluation of an In-service Steel Bridge Using Field Measurement Data (현장계측데이터를 활용한 공용 중 강교량의 피로 신뢰도평가)

  • Lee, Sang Hyeon;An, Lee-Sak;Park, Yeun Chul;Kim, Ho-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.599-606
    • /
    • 2022
  • Strain gauges and the bridge weigh-in-motion (BWIM) method are the representative field measurement methods used for fatigue evaluationsof a steel bridge-in-service. For a fatigue reliability evaluation to assess fatigue damage accumulation, the effective stress range and the number of stress cycles applied as the fatigue details can be estimated based on the AASHTO Manual for Bridge Evaluations with the field measurement data of the target bridge. However, the procedure for estimating the effective stress range and the stress cycles from field measurement data has not been explicitly presented. Furthermore, studies that quantitatively compare differences in fatigue evaluation results according to the field measurement data type or processing method used are still insufficient. Here, a fatigue reliability evaluation is conducted using strain and BWIM data that are measured simultaneously. A frame model and a shell-solid model were generated to examine the effect of the accuracy of the structural analysis model when using BWIM data. Also, two methods of handling BWIM data when estimating the effective stress range and average daily cycles are defined. As a result, differences in evaluation results according to the type of field measurement data used, the accuracy of the structural analysis model, and the data handling method could be quantitatively confirmed.