Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.18
no.1
s.116
/
pp.62-75
/
2007
This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.
The public-key cryptosystems such as Diffie-Hellman Key Distribution and Elliptical Curve Cryptosystems are built on the basis of the operations defined in GF(2$^{m}$ ):addition, subtraction, multiplication and multiplicative inversion. It is important that these operations should be computed at high speed in order to implement these cryptosystems efficiently. Among those operations, as being the most time-consuming, multiplicative inversion has become the object of lots of investigation Formant's theorem says $\beta$$^{-1}$ =$\beta$$^{2}$sup m/-2/, where $\beta$$^{-1}$ is the multiplicative inverse of $\beta$$\in$GF(2$^{m}$ ). Therefore, to compute the multiplicative inverse of arbitrary elements of GF(2$^{m}$ ), it is most important to reduce the number of times of multiplication by decomposing 2$^{m}$ -2 efficiently. Among many algorithms relevant to the subject, the algorithm proposed by Itoh and Tsujii[2] has reduced the required number of times of multiplication to O(log m) by using normal basis. Furthermore, a few papers have presented algorithms improving the Itoh and Tsujii's. However they have some demerits such as complicated decomposition processes[3,5]. In this paper, in the case of 2$^{m}$ -2, which is mainly used in practical applications, an efficient algorithm is proposed for computing the multiplicative inverse at high speed by using both the factorization formula x$^3$-y$^3$=(x-y)(x$^2$+xy+y$^2$) and normal basis. The number of times of multiplication of the algorithm is smaller than that of the algorithm proposed by Itoh and Tsujii. Also the algorithm decomposes 2$^{m}$ -2 more simply than other proposed algorithms.
Lee, Haksung;Kang, Bang Hun;Lee, Kwang-seung;Lee, Su Hwan
Journal of Bio-Environment Control
/
v.30
no.4
/
pp.287-294
/
2021
In order to expand facility agriculture and reduce greenhouse construction costs in reclaimed land, a greenhouse foundation method that satisfies economic feasibility and structural safety at the same time is required. As an alternative, the allowable bearing capacity and settlement were reviewed when the DCM(Deep cement mixing) method was applied among the soft ground reinforcement methods. To examine the applicability of the greenhouse foundation, the allowable bearing capacity and settlement were calculated by applying the theory of Terzaghi, Meyerhof, Hansen, and Schmertmann. In case of the diameter of 800mm and the width and length of the foundation of 4m, the allowable bearing capacity was 179kN/m2 and the settlement was 7.25mm, which satisfies the required bearing capacity and settlement standards. The calculation results were verified through FEM(Finite element method) analysis using the Mohr-Coulomb material model. The allowable bearing capacity was 169kN/m2 and the settlement was 2.52mm. The bearing capacity showed an error of 5.6% compared to calculated value, and the settlement showed and error of 65.4%. Through theoretical calculations and FEM analysis, it was confirmed that the allowable bearing capacity and settlement satisfies the design criteria as a greenhouse foundation when the width and length of the foundation were 4m. Based on the verified design values, it is expected to be able to present the foundation design criteria for greenhouses through empirical tests such as bearing capacity tests and long-term settlement monitoring.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.2
/
pp.387-393
/
2021
In this study, finite element analysis was performed to evaluate a method of increasing the fatigue life of the pipe connection structure commonly used in the topside structure of offshore platforms. MSC Patran/Nastran, a commercial analysis program, was used, and the critical structural model was selected from the global analysis. To realize the stress concentration phenomenon according to the load, modeling using 8-node solid elements was implemented. The main loads were considered to be two lateral loads and a tensile load on a diagonal pipe. To check the hotspot stress at the main location, a 0.01 mm dummy shell element was applied. After calculating the main stress at the 0.5-t and 1.5-t locations, the stress generated in the weld was estimated through extrapolation. In some sections, this stress was observed to be below the fatigue life that should be satisfied, and reinforcement was required. For reinforcement, a bracket was added to reduce the stress concentration factor where the fatigue life was insufficient without changing the thickness or diameter of the previously designed pipe. Regarding the tensile load, the stress in the bracket toe increased by 23 %, whereas the stress inside and outside of the pipe, which was a problem, decreased by approximately 8 %. Regarding the flexural load, the stress at the bracket toe increased by 3 %, whereas the stress inside and outside of the pipe, which was also a problem, decreased by approximately 48 %. Owing to the new bracket reinforcement, the stress in the bracket toe increased, but the S-N curve itself was better than that of the pipe joint, so it was not a significant problem. The improvement method of fatigue life is expected to be useful; it can efficiently increase the fatigue life while minimizing changes to the initial design.
Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
Journal of the Korean GEO-environmental Society
/
v.20
no.5
/
pp.13-21
/
2019
There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.
Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.
Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
Journal of Korea Water Resources Association
/
v.52
no.10
/
pp.743-752
/
2019
The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.1
/
pp.172-178
/
2021
In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.
Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.