• 제목/요약/키워드: Finger force

검색결과 187건 처리시간 0.027초

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

Anslysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung Hwan;Freivalds, Andris;Lee, Myun W.
    • 대한인간공학회지
    • /
    • 제14권1호
    • /
    • pp.69-81
    • /
    • 1995
  • Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for the analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$^{TM}$, Virtual technologies) with eighteem joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented inte- grating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an efficient and cost-effective solution to task analysis of manual tool handling tasks.s.

  • PDF

정상인 힘 추적 능력 분석 (Analysis on Force Tracking Capabilities of Healthy Adults)

  • 이백희;박현지;김성호;이병화;나덕렬;유희천
    • 대한산업공학회지
    • /
    • 제41권2호
    • /
    • pp.121-127
    • /
    • 2015
  • A reduction of motor performance due to brain disorders can be screened by evaluating force tracking capabilities (FTCs). Existing studies have examined FTCs mainly using simple sinusoidal waves, of which repeated profiles have a critical limitation due to a learning effect in force tracking. The present study examined the effects of personal factors (age and gender) and sinusoidal wave factors (central force and complexity) on FTCs of healthy adults using composite sinusoidal wave profiles (CSWPs). FTCs were measured using Finger $Touch^{TM}$ for 30 seconds and quantified in terms of time within the target range (TWR, accuracy measure) and relative RMSE (RRMSE, variability measure). A total of 90 healthy adults in 20s to 70s with the equal gender ratio participated in the experiment consisting of combinations of 2 central force levels (6 N and 10 N) and 2 complexity levels (approximate entropy, ApEn = 0.03 and 0.06) of CSWPs. Significantly decreased FTCs (lower TWR and higher RRMSE) were found in aged adults, females, the low central force, and the high complexity. The detailed FTC decrements include a 43% reduced TWR and a 85% increased RRMSE of older adults in 70s as compared to those in 20s, a 17% reduced TWR and a 17% increased RRMSE of female as compared to those of male, a 30% reduced TWR and a 108% increased RRMSE at central force = 6N when compared to those at central force = 10N, and a 19% reduced TWR and a 30% increased RRMSE at ApEn = 0.06 as compared to those at ApEn = 0.03. The characteristics of FTCs for CSWPs can be of use in establishing an assessment protocol of motor performance for screening brain disorders.

여유자유도를 가지는 인간형 로봇 손의 자세 및 힘 제어 (Force and Pose control for Anthropomorphic Robotic Hand with Redundancy)

  • 이건규;김용범;김안나;강기태;최혁렬
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.179-185
    • /
    • 2015
  • The versatility of a human hand is what the researchers eager to mimic. As one of the attempt, the redundant degree of freedom in the human hand is considered. However, in the force domain the redundant joint causes a control issue. To solve this problem, the force control method for a redundant robotic hand which is similar to the human is proposed. First, the redundancy of the human hand is analyzed. Then, to resolve the redundancy in force domain, the artificial minimum energy point is specified and the restoring force is used to control the configuration of the finger other than the force in a null space. Finally, the method is verified experimentally with a commercial robot hand, called Allegro Hand with a force/torque sensor.

An instrumented Glove for Grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung-Hwan;Cannon, David;Freivalds, Andris
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.141-146
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotics manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct(VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.ck telemanipulation.

  • PDF

An instrumented glove for grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung Hwan;Cannon, David;Freivalds, Andris
    • 대한인간공학회지
    • /
    • 제15권2호
    • /
    • pp.165-176
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufactruing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple- degree-of-freedom force feedback telemanipulation.

  • PDF

무인 FA를 위한 플렉시블 그리퍼 설계에 관한 연구 (A Study on Design of Flexible Gripper for Unmanned FA)

  • 김현근;김기복;김태관
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we propose a new approach to design and control a smart gripper of robot system. A control method for flexible grasping a object in partially unknown environment was proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases. The first step is scanning process which two first joints were moved to mid-position of the detected range by a state-variable feedback position controller, after the scanning was finished. The contact force of fingertip was then controlled using the detection sensor of the servo controller for finger joint control. The proposed grasping planning was tested on rectangular bar.

진동모드에 따른 각종 장갑의 방진효과 분석 (An Analysis of Vibration Attenuation Effect of the different type of Gloves and Drilling Mode)

  • 황성환;이형일;이동충
    • 산업경영시스템학회지
    • /
    • 제24권69호
    • /
    • pp.65-73
    • /
    • 2001
  • The objective of this study is to evaluate the vibration attenuation effects of the different type of gloves and drilling mode while operating a light-weighted powered hand drill. For the experimental design, five different kinds of glove(barehanded cotton partly coated anti-vibration, and open-finger vibration glove) two types of push force level(100N and 200N) and two types of drilling mode(impact and non-impulsive) were considered. Six healthy male subjects were employed to drive screws into a vertically mounted marble plate with a powered hand drill in a randomly ordered experimental conditions. The findings of this study are summarized as follows; (1) It was found that the best combination of overall BMS transmissibility was using impact drilling mode with anti-vibration glove among evaluated experimental conditions (2) The wearing open finger vibration glove in mid-frequency level and anti-vibration glove with impact drill in high-frequency were the best in the result from mean corrected transmissibility equation of ISO 10819.

  • PDF