• Title/Summary/Keyword: Finger Force

Search Result 187, Processing Time 0.027 seconds

Numerical investigation on pressure responsiveness properties of the skirt-cushion system of an air cushion vehicle

  • Xu, Shengjie;Tang, Yujia;Chen, Kejie;Zhang, Zongke;Ma, Tao;Tang, Wenyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.928-942
    • /
    • 2020
  • The pressure responsiveness property of a skirt-cushion system, which is closely related to the overall performance of Air Cushion Vehicles (ACVs), has always been the difficulty and challenging problem involving cushion aerodynamics and flexible skirt dynamics. Based on a widely used bag and finger skirt-cushion system, the pressure responsiveness properties are investigated numerically. The physical process and mechanism are analyzed and a numerical method for evaluating the pressure responsiveness property is proposed. A cushion-skirt information communication platform is also presented for interchanging the force and the skirt configuration between cushion aerodynamics and flexible skirt dynamics. The pressure responsiveness of a typical skirt-cushion system is calculated and the results demonstrate that the pressure responsiveness property helps alleviate the influence of the cushion height changing on the overall performance of ACVs. Finally, the influences of skirt geometrical and cushion aerodynamic parameters on the pressure responsiveness properties are discussed systematically, giving insight into the design of skirt-cushion systems.

A Study of VR Interaction for Non-contact Hair Styling (비대면 헤어 스타일링 재현을 위한 VR 인터렉션 연구)

  • Park, Sungjun;Yoo, Sangwook;Chin, Seongah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.367-372
    • /
    • 2022
  • With the recent advent of the New Normal era, realistic technologies and non-contact technologies are receiving social attention. However, the hair styling field focuses on the direction of the hair itself, individual movements, and modeling, focusing on hair simulation. In order to create an improved practice environment and demand of the times, this study proposed a non-contact hair styling VR system. In the theoretical review, we studied the existing cases of hair cut research. Existing haircut-related research tend to be mainly focused on force-based feedback. Research on the interactive haircut work in the virtual environment as addressed in this paper has not been done yet. VR controllers capable of finger tracking the movements necessary for beauty enable selection, cutting, and rotation of beauty tools, and built a non-contact collaboration environment. As a result, we conducted two experiments for interactive hair cutting in VR. First, it is a haircut operation for synchronization using finger tracking and holding hook animation. We made position correction for accurate motion. Second, it is a real-time interactive cutting operation in a multi-user virtual collaboration environment. This made it possible for instructors and learners to communicate with each other through VR HMD built-in microphones and Photon Voice in non-contact situations.

Exo-Skeletal Flexible Structure for Communal Touch Device (공용 터치 장치를 위한 외골격 유연 구조)

  • Jeong, Jae-Yun;Lee, EunJi;Park, Hyeongryool;Chu, Won-Shik
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.219-225
    • /
    • 2020
  • Importance of touch equipment and smart learning increases and public institutions and educational facilities are applying smart devices to their daily environments. However, users of public smart devices are at risk of being exposed to the direct and indirect spread of infectious diseases. This study develops an exo-finger that wraps the fingertips of smart device users and is intended to have a disease prevention effect when used on public equipment. An exoskeletal body was fabricated by inserting a secondary material which is a mixture of the activating material, carbon black (CB) and a macromolecular polymer (elastomer) into a mold. This device was confirmed to have a touch function when the CB content was 0.030 wt% or higher, and the content of the elastomer was varied so that it could have a friction force similar to that when a person touches a smart device (a friction coefficient of 2.5). Through experiments, it was concluded that the CB content had little effect on the friction coefficient. As a result of testing the completed prototype on a smart device, it was proven that the developed exoskeletal device can be useful in situations where it is impossible to touch due to wearing protective gears, or when equipment such as gloves is used to prevent the spread of infectious diseases.

Mechanical Analysis of throw motion in Bowling (볼링투구동작의 운동역학적 분석(II))

  • Lee, Kyung-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.173-191
    • /
    • 2002
  • The purpose of this study was defined efficient throw motion pattern to obtain the quantitative data and to achieve successful bowling through kinetic - kinematic variables on the throw motion. Subject of group composed of three groups : Higher bowlers who are two representative bowlers with 200 average points and one pro-bowler. Middle bowlers who are three common persons with 170 average points. Lower bowler who are three common persons with 150 average points. Motion analysis on throw motion in three groups respectively has been made through three-dimension cinematography using DLT method. Two high-speed video camera at operating 180 frame per secondary. One-way ANOVA has been used to define variable relations. Analyzed result and conclusion are the following : The displacement of back of the hand must have wider difference of each right-left displacement to increase the spin of the ball. In high bowlers group, difference between the front-rear position of back of the hand in case of success and that in case of failure in follow throw is 0.17m. That is to say, momentum in case of success come to increase greatly, compared with that in case of failure. To increase the spin of the ball, the potential difference should be narrower in follow through. In case of the high bowlers, the velocity of the front-rear direction of the back of the hand has been the fastest both in release and follow through, compared with those in other groups, which has contributed to increasing the spin force of the ball. The orders in the resultant velocity of the back of the hand has shown the this : the finger tip$\rightarrow$the back of the hand$\rightarrow$wrist.These orders made the proximal segment support the distal segment. The distal segment has provided the condition to accelerate the velocity. In case of failure, the suddenly increased velocity has caused the failure in the follow through. Acutely flexing the angle of the back of the hand has contributed to lifting to increase the spin of the ball.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes

  • Garcia-Payo, M.C.;Essalhi, M.;Khayet, M.;Garcia-Fernandez, L.;Charfi, K.;Arafat, H.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.215-230
    • /
    • 2010
  • Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor.

Development of Quantitative Ergonomic Assessment Method for Helicopter Cockpit Design in a Digital Environment (가상 환경 상의 헬리콥터 조종실 설계를 위한 정량적인 인간공학적 평가 방법 개발)

  • Jung, Ki-Hyo;Park, Jang-Woon;Lee, Won-Sup;Kang, Byung-Gil;Uem, Joo-Ho;Park, Seik-Won;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • For the development of a better product which fits to the target user population, physical workloads such as reach and visibility are evaluated using digital human simulation in the early stage of product development; however, ergonomic workload assessment mainly relies on visual observation of reach envelopes and view cones generated in a 3D graphic environment. The present study developed a quantitative assessment method of physical workload in a digital environment and applied to the evaluation of a Korean utility helicopter (KUH) cockpit design. The proposed assessment method quantified physical workloads for the target user population by applying a 3-step process and identified design features requiring improvement based on the quantified workload evaluation. The scores of physical workloads were quantified in terms of posture, reach, visibility, and clearance, and 5-point scales were defined for the evaluation measures by referring to existing studies. The postures of digital humanoids for a given task were estimated to have the minimal score of postural workload by finding all feasible postures that satisfy task constraints such as a contact between the tip of the index finger and a target point. The proposed assessment method was applied to evaluate the KUH cockpit design in the preliminary design stage and identified design features requiring improvement. The proposed assessment method can be utilized to ergonomic evaluation of product designs using digital human simulation.