• Title/Summary/Keyword: Fines

Search Result 289, Processing Time 0.026 seconds

Evaluation of the applicability of oil palm EFB fines as a functional organic filler (기능성 유기충전제로서 오일팜 EFB 미세분 적용특성)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.56-64
    • /
    • 2014
  • The applicability of oil palm EFB(Empty Fiber Bunch) to the papermaking process as a functional organic filler was investigated in this study. Since the EFB has similar chemical composition to the lignocellulose materials such as wood fiber, the fines of EFB was applied to the handsheet paper as an alternative to wood powder which were used as an organic filler to improve water removal efficiency and bulk. The experiments showed that the EFB fines resulted in the higher water removal efficiency at the wet pressing process and leaded to the higher bulk than those of wood powder. In case of 10 % addition of organic filler, the strength properties were not significantly changed. Those results suggested that the EFB could be used as a new organic filler for improving water removal efficiency and bulk property.

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Effect of Moisture on Tensile Strength in Sand (모래의 인장강도에 미치는 함수비의 영향)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.13-21
    • /
    • 2002
  • An extensive tension experiment was carried out to examine the variation of tensile strength in moist sand having moisture contents in the range of 0.5% < w < 4.0% with newly developed direct tension apparatus. It was observed that tensile strength of sand varied as functions of moisture content, relative density, presence of fines, and level of precompression. Tensile strength increases with increasing moisture content and fines, and this trend is more noticeable at increasing relative densities. However, the influences of relative density and fines on the tensile strength are substantially dependent on the water content. These effects are reduced at low moisture levels (w < 0.5%). The precompression effects also depend on the water content but less on the duration and level of the precompression.

Plastic viscosity based mix design of self-compacting concrete with crushed rock fines

  • Kalyana Rama, JS;Sivakumar, MVN;Vasan, A;Kubair, Sai;Ramachandra Murthy, A
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.461-468
    • /
    • 2017
  • With the increasing demand in the production of concrete, there is a need for adopting a feasible, economical and sustainable technique to fulfill practical requirements. Self-Compacting Concrete (SCC) is one such technique which addresses the concrete industry in providing eco-friendly and cost effective concrete. The objective of the present study is to develop a mix design for SCC with Crushed Rock Fines (CRF) as fine aggregate based on the plastic viscosity of the mix and validate the same for its fresh and hardened properties. Effect of plastic viscosity on the fresh and hardened properties of SCC is also addressed in the present study. SCC mixes are made with binary and ternary blends of Fly Ash (FA) and Ground Granulated Blast Slag (GGBS) with varying percentages as a partial replacement to Ordinary Portland Cement (OPC). The proposed mix design is validated successfully with the experimental investigations. The results obtained, indicated that the fresh properties are best achieved for SCC mix with ternary blend followed by binary blend with GGBS, Fly Ash and mix with pure OPC. It is also observed that the replacement of sand with 100% CRF resulted in a workable and cohesive mix.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.

Effect of Fines Content Including Clay on Liquefaction of Silt (점토를 포함한 세립분 함유량이 실트의 액상화에 미치는 영향)

  • Hur, Soung-Hoon;Lee, Seong-Cheol;Kim, Tae-Hyeong;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.5-13
    • /
    • 2021
  • Liquefaction behaviors of two natural silty samples containing fines including clay of 50% or more (Sample No.1 was silt 44.1% and clay 8.8%, sample No.2 was silt 57.2% and clay 12.4%) were examined by a cyclic triaxial test. According to the results on samples containing 50% or more of fine particles, an increase in the fine content decreases the liquefaction resistance of the sample. In other words, when the fine content increases, the liquefaction state of sample is reached with a small number of cyclic loads. In the relationship between the excess pore water pressure ratio and the number of cycles, the slope of the excess pore water pressure ratio increases more steeply as the fine content increases. As a result of analyzing the liquefaction behavior of the two silts with the content of clay contained in the fines, liquefaction occurred more easily in the No.2 silt with high clay content. This result shows that the clay contained in the fines affects the liquefaction behavior of the silt.

Analysis of Effective Improvement Depth for Establishing Quality Control Criteria of Rapid Impact Compaction for Public Fill Compaction (Public Fill 다짐 시 급속충격다짐공법의 품질관리기준 수립을 위한 유효개량심도 분석)

  • Kim, Kyu-Sun;Park, Jaeyoung;Kim, Hayoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.5-18
    • /
    • 2023
  • The construction timeline for earthworks can be significantly reduced by substituting the conventional layer-by-layer compaction using a vibratory roller with single-layer compaction through the rapid impact compaction (RIC) method. Dynamic load compaction is well-suited for coarse-grained soils like sand. However, as the supply of sand, the primary reclamation material, becomes scarcer, the utilization of soil with fines is on the rise. To implement the dynamic load compaction, such as RIC, with reclaimed materials containing fines, it's imperative to determine the effective improvement depth. In this study, we assess the impact of the RIC method on the effective improvement depth for clean sand and public fill with fines, comparing field test results before and after RIC application. Our focus is on the cone resistance (qc) as it pertains to compaction quality control criteria. In conclusion, it becomes evident that standardizing the cone resistance is vital for the quality control of various reclaimed soils with fines. We have evaluated the compaction quality control criteria corresponding to a relative density (Dr) of 70% for clean sand as Qtn,cs = 110. As a result of this analysis, we propose new quality control criteria for qc, taking into account the fines content of reclaimed soils, which can be applied to RIC quality control.

Recycling of Wastepaper(Ⅶ)-The Effect of Stock Composition on Enzyme Activity- (고지재생연구(제 7보)-지료조성이 효소활성에 미치는 영향-)

  • 여성국;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • Effect of furnish on enzyme activity was investigated by using the three components (cellulose, enzyme, and cationic polyelectrolyte) model papermaking system. Avicel was used as a cellulose model compound to observe the effect of adsorption and desorption of enzyme with other component and the resultant change of particle size. As an experimental result, the enzyme loses considerably its apparent activity due to the adsorption onto cellulose and cationic polyelectrolyte. Activities of enzyme applied to the actual papermaking stocks having controlled fiber length showed different behavior in terms of pulp species UKP and KOCC stocks. That is, the enzyme activity in UKP was increased as fines content increased, however, vice versa in KOCC stock . This result can be considered to be the existence of various contaminants included in the fines of KOCC . The effect of possible contaminants such as inorganic materials, calcium ion, surfactant, and conductivity on enzyme activity were also investigated.

  • PDF

부상부유처리에 의한 국산 골판지 고지의 분급(I)

  • 류정용;지경락;여성국;신종호;송봉근
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11a
    • /
    • pp.205-214
    • /
    • 1999
  • In order to investigate the influencing factors of flotation fractionation. flotations were performed at varied conditions. The selectivity of fines fractionation is mainly affected by long fibers flocculating degree and if it were not for sufficient flocculation of long fibers, increase of long fibers loss could not be avoided. The amount of flotation reject totally depends on the stability of forth floated on the stock surface. only the small size fines stabilize the froth as they hinder the drainage of liquid lamella in flotation-froth. Two important factors of flotation conditions are improving the flocculation of long fibers and increasing the amount of flotation reject. Changing a flotation flux or an air-mixing ratio with aims of increasing the flocculation of fibers and reject ratios is in conflict. In order to satisfy the both conditions for reducing long fiber loss and for increasing flotation reject a new fractionation promoter is urgently required.

  • PDF

Recycling of Wastepaper(II) -Improvement of Drainage and Strength Properties of Testliner by Successive Treatments of Flotation and Mixed Enzyme- (고재재생연구(제2보)-부상부유 및 효소처리에 의한 라이너지의 탈수성 및 강도 개선)

  • 지경락;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.10-16
    • /
    • 1999
  • Air froth flotation was applied to OCC recycling process as a new pulp fractionation method and the effects of strength and drainage properties of testliner were also investigated. Fines including inks, stickies, and inorganic substances in OCC stock furnish were efficiently separated by the flotation. After the flotation, selective enzymatic treatment on the flotation reject was separately preformed, and then, the refined long fiber(flotation accept) portion was combined again with the fines(flotation reject) fraction for papermaking. This combination process was found to be effective in improving strength and drainage properties of testliner based on 100% OCC.

  • PDF