• Title/Summary/Keyword: Fine-particle

Search Result 1,546, Processing Time 0.028 seconds

Characteristics of PM10 concentration at seashore and inland according to land-use in Busan (부산지역 지역용도별 해안과 내륙의 PM10 농도 특성)

  • Jeon, Byung-Il
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • This study was conducted to consider the characteristics of PM10(particulate matter with aerodynamic diameters less than 10 ${\mu}m$) concentration according to land-use in Busan coastal area. Fine particle is affected by emissions, geographical conditions and meteorological factors. In case industrial area, Gamjeondong(inland) PM10 concentration was higher than Noksandong(seashore) at all season except for Summer. Primary peak at Gamjeondong cleared than Noksandong in Fall and Winter. In case green area, Daejeodong(inland) PM10 concentration was higher than Dongsamdong(seashore) at all seasons. In case commercial area, primary peak occurrence time at Jeonpodong lagged one hour according to season and diurnal change of PM10 concentration at Gwangbokdong was higher than Jeonpodong in Spring. In case residential area, high PM10 concentration(80~90 ${\mu}g/m^3$) lasted for six hours during the daytime in Spring at Deogcheondong and Yongsuri(inland).

  • PDF

Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor (고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향)

  • RYU, HOJUNG;LEE, DONGHO;YOON, JOOYOUNG;JANG, MYOUNGSOO;BAE, DALHEE;PARK, JAEHYEON;BAEK, JEOMIN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.

A Study on the Improvement of the Standards of Backfill Materials for Underground Pipelines Carrying Natural Gas (도시가스 배관용 되메움재 기준 개선에 관한 연구)

  • Ryou, Young-Don;Kwak, Che-Sik;Ryu, Young-Jo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • According to the Integrated Notice on City Gas Safety Management Standards, materials for bedding and foundation which are around the pipe should be sands or fine grade soil without large particle that is more than 19 mm size. However, sands are mostly used at gas pipeline construction sites and this causes a shortage of sands and an increase of construction costs. It even causes the disruption of natural environment. In order to improve the standards of backfill material, we have researched regulations in other countries and investigated the pipeline construction sites to survey the present state of backfilling. We also have studied what the bedding and foundation materials affect on buried gas pipelines. Lastly, we have suggested suitable materials for bedding and foundation besides sands. We are sure this paper help the government amend the Notice about backfill materials.

  • PDF

Dust collection system optimization with air blowing and dust suction module (에어 블로어와 흡입기능을 가진 미세먼지 흡입시스템의 최적화)

  • Jeong, Wootae;Kwon, Soon-Bark;Ko, Sangwon;Park, Duckshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.290-297
    • /
    • 2016
  • The performance of track cleaning trains to remove accumulated fine particulate matter in subway tunnels depends on the design of the suction system equipped under the train. To increase the efficiency of the suction system under the cleaning vehicle, this paper proposes a novel dust suction module equipped with both air blowing nozzles and a dust suction structure. Computational Fluid Dynamics (CFD) analysis with turbulent flow was conducted to optimize the dust suction system with a particle intake and blowing function. The optimal angle of the air blowing nozzle to maximize the dust removal rate was found to be 6 degrees. The performance of the track cleaning vehicle can be increased by at least 10 percent under an operation speed of 5km/h.

The Statistical Hypothesis Verification to Influence of Addition of Metakaolin and Silica Fume on Compressive Strength and Chloride Ion Penetration of High Strength Concrete (메타카올린 및 실리카퓸의 혼입이 고강도 콘크리트의 압축강도와 염소이온 투과에 미치는 영향에 관한 통계적 가설검증)

  • Min, Jeong Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.215-225
    • /
    • 2011
  • Metakaolin is a dehydroxylated form of the clay mineral kaolinite. Rocks that are rich in kaolinite are known as china clay or kaolin, traditionally used in the manufacture of porcelain. The particle size of metakaolin is smaller than cement particles, but not as fine as silica fume. This paper investigates the effect of the concrete containing metakaolin as a mineral admixture on the compressive strength and resistance properties to chloride ion penetration. In this study, the experiment was carried out to investigate and analyze the influence of replacement ratio of metakaolin and micro silica fume on the compressive strength and chlorine ion penetration resistance of concrete. All levels were water/binder ratio 30%, replacement ratio of metakaolin and silica fume were 0, 5, 10, 15, 20% respectively. The compressive strength of concrete using metakaolin tends to increase, as the replacement ratio increases but the chlorine ion penetration resistance was not so as lager as silica fume concrete. Therefore, the optimum mixing ratio of metakaoline to satisfy a properties of compressive strength and chlorine ion penetration resistance was was approximately10%.

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Influence of Heat Treatment and Magnesium Content on Corrosion Resistance of Al-Mg Coated Steel Sheet (PVD법에 의해 제작한 Al-Mg 코팅 강판의 내식성에 미치는 Mg 함량 및 열처리의 영향)

  • Kang, Jae Wook;Park, Jun-Mu;Hwang, Sung-Hwa;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • This study was intended to investigate the effect of the amount of magnesium addition and heat treatment in the Al-Mg coating film in order to improve corrosion resistance of aluminum coating. Al-Mg alloy films were deposited on cold rolled steel by physical vapor deposition sputtering method. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 10 min. The morphology was observed by SEM, component and phase of the deposited films were investigated by using GDLS and XRD, respectively. The corrosion behaviors of Al-Mg films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of magnesium content, the morphology of the deposited Al-Mg films changed from columnar to featureless structure and particle size was became fine. The x-ray diffraction data for deposited Al-Mg films showed only pure Al peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ were formed after heat treatment. All the sputtered Al-Mg films obviously showed good corrosion resistance compared with aluminum and zinc films. And corrosion resistance of Al-Mg film was increased after heat treatment.

Biomechanical Analysis of Wearing Carbon Nanotube-Based Insole during Drop Landing (탄소나노튜브 인솔 착용에 따른 드롭 착지 동작의 생체역학적 분석)

  • Chae, Woen-Sik;Jung, Jae-Hu;Lee, Haeng-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • The purpose of this study was to determine the biomechanical effect of wearing carbon nanotube-based insole on cushioning and muscle tuning during drop landing. Twenty male university students(age: $21.2{\pm}1.5yrs$, height: $175.4{\pm}4.7cm$, weight: $70.2{\pm}5.8kg$) who have no musculoskeletal disorder were recruited as the subjects. Average axial strain, average shear strain, inversion angle, linear velocity, angular velocity, vertical GRF and loading rate were determined for each trial. For each dependent variable, a one-way analysis of variance(ANOVA) with repeated measures was performed to test if significant difference existed among different three conditions(p<.05). The results showed that Average axial strain of line 4 was significantly less in CNT compared with EVA and PU during IP phase. The average shear strain was less in CNT compared with EVA and PU during other phases. The inversion angle was increased in CNT compared with EVA and PU during all phase. In linear velocity, angular velocity, vertical GRF and loading rate, there were no significant difference between the three groups. This result seems that fine particle of carbon nanotube couldn't make geometric form which can absolve impact force by increasing density through eliminating voids of forms. Thus, searching for methods that keep voids of forms may play a pivotal role in developing of insole. This has led to suggestions of the need for further biomechanical analysis to these factors.

Effects of Precursor pH on Synthesizing Behavior and Morphology of Mullite in Stoichiometric Composition (화학양론 조성의 뮬라이트 합성거동과 입자형상에 미치는 전구체 pH의 영향)

  • Lee, Jae-Ean;Kim, Jae-Won;Jung, Yeon-Gil;Chang, Jung-Chel;Jo, Chang-yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.573-579
    • /
    • 2002
  • Stoichiometric mullite ($3Al_2$$O_3$. $2SiO_2$) precursor sol has been prepared by sol-gel method. The effects of the precursor pH and sintering temperature on the synthesizing behavior and morphology of mullite have been studied. Mullite precursor sol was prepared by dissolution of aluminum nitrate enneahydrate (Al($NO_3$)$_3$.9H$_2O) into the mixture of silica sol. Precursor pH of the sols was controlled to acidic condition ($PH\leq$ 1~1.5) and to basic condition ($pH\geq$8.5~9). The synthesized aluminosilicate sols were formed under 20 MPa pressure after drying at $150^{\circ}C$ for 24 hours, and then sintered for 3hours in the temperature range of $1100~1600^{\circ}C$. From TGA/DTA analysis, total weight loss in the aluminosilicate gel of the acidic sample was (equation omitted) 56% and that of the basic sample was (equation omitted) 85%, indicating that the synthesizing temperature of mullite phase for acidic and basic samples was above $1200^{\circ}C$ and $1300^{\circ}C$, respectively. The morphologies of the synthesized mullite were fine and needle-like (or rod-like) for acidic sample, and granular for basic sample that has been sintered above $1300^{\circ}C$. It was found that the morphology of mullite particle was predominantly governed by precursor pH and sintering temperature.