• Title/Summary/Keyword: Fine structure

Search Result 1,751, Processing Time 0.027 seconds

Microstructure of Zinc electrodeposit in Cyanide Solution (시안화아연욕을 사랑한 아연 전착층의 조직특성)

  • Ye G.C;Cho E.H.
    • Journal of Surface Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.41-58
    • /
    • 1984
  • Zinc was electrodeposited from cyanide solutions at temperature from 20$^{\circ}C\;to\;40^{\circ}C$ in the range of current density from 0.5 to 8A/$dm^2$. The preferred orientation changed from (10.3)+(11.0) to (11.0) texture with increasing cathode overpotential in the additive free solution, while the (11.0) preferred orientation developed at lower overpotentials (800-1270 mV) and the (11.0)+(10.0) preferred orientation was formed at higher overpotential (1300-1400mV) in the solution with brightner. Mossy type of morphology developed mostly in the additive free deposits and the microstructure of the cross section of the above deposits changed from columar structure to granular structure with increasing overpotential. The surface appearance of the deposits with additive having (11.0) texture was the smooth deposit of very small crystallite, while that of the deposits having (11.0)+(10.0) texture was fine crystalline deposit. The microstructure of the cross section of them was the fine field oriented type of structure.

  • PDF

A Study on Physical Properties of $PAN-CuSO_4$ Electroconductive Fiber and Wool Blended Fabrics (아크릴-황산동 복합체로 제조한 도전성 섬유 및 혼방한 모직물의 물성에 관한 연구)

  • 정영진;이명환;최해욱;이기환
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.8-15
    • /
    • 1999
  • Electroconductive fiber was obtained by acryl fiber treated with $CuSO_4$. The Properties and structure of fiber and fabric such as mechanical property, electrical conductivity, fine structure, electrification were investigated. The experimental results are as follows 1) The electrical conductivity of the conducting fiber was greatly increased but fine structure and physical properties were similar to acryl fiber 2) Fabric made by mix spinning with conducting fiber was shown great electrification effect. 3) In the mix spinning with conducting fiber, it was necessary to use different. finishing such as milled finish because stiffness of fabric made by mix spinning with conducting fiber was increased and elastic recovery was decreased. 4) The antimicrobial activity of electroconductive fiber blended wool was effective by Cu component for shake flask test.

  • PDF

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.

Chemical Compositio and Structure of Evaporated Alloying Element by Laser Welding Condition (레이저 용접조건에 따른 증발된 합금원소의 조성과 구조의 변화)

  • 조상명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.523-532
    • /
    • 1999
  • This study is aimed to obtain fundamental knowledge of pulse laser welding phenomena the authors investigated the structure and composition of evaporated particles of Al alloys in air and in the Ar atmosphere during pulsed laser welding. The ultra-fine particles of 5 to 100nm diameter in a globular or irregular shape were formed in laser-induced plasma and the main structure was $MgAl_2O_4$ The composition of particles was ifferent depending on the power density of a laser beam; namely under the low power density conditions magnesium was predominant in the parti-cles while aluminium content increased with an increase in the power density. These results were attributed to evaporation phenomena of metals with different boiling points and latent heats of vaporization. On the other hand the number density of laser-induced plasma species was obtained by Saha's equation. it was confirmed that the number density depends upon the plasma tempera-ture and total pressures.

  • PDF

Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering

  • Kim, Tae-Kyu;Zuo, Xiaobing;Tiede, David M.;Ihee, Hyot-Cherl
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1676-1680
    • /
    • 2004
  • We demonstrate that wide-angle X-ray scattering pattern from photoactive yellow protein (PYP) in solution using a high flux third generation synchrotron X-ray source reflects not only the overall structure, but also fine structures of the protein. X-ray scattering data from PYP in solution have been collected in q ranges from 0.02 ${\AA}^{-1}$ to 2.8 ${\AA}^{-1}$. These data are sensitive to the protein structure and consistent with the calculation based on known crystallographic atomic coordinates. Theoretical scattering patterns were also calculated for the intermediates during the photocycle of PYP to estimate the feasibility of time-resolved wide-angle X-ray scattering experiments on such proteins. These results demonstrate the possibility of using the wide-angle solution X-ray scattering as a quantitative monitor of photo-induced structural changes in PYP.

Technology Trends for Photoresist and Research on Photo Acid Generator for Chemical Amplified Photoresist (포토 레지스트의 기술 동향과 화학 증폭형 포토레지스트에서의 광산 발생제의 연구)

  • Kim, Sung-Hoon;Kim, Sang-Tae
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.252-264
    • /
    • 2009
  • Lithographic data obtained from PHS(polyhydroxy styrene) having various functionalities were investigated by using a photoacid generator based on diazo and onium type. Chemically amplified photoresist based on the KrF type photoresist was developed by using a photoacid generator and multi-functional resin. Thermal stability for the photoacid generator showed that the increase of loading amount of photoacid generator resulted in the decrease of glass transintion temperature (Tg). The photoacid generators having methyl, ethyl, or propyl group in their cationic structure produced T-top structure in pattern profile due to the effect of acid diffusion during the generation of acid in the resist. The increase of carbon chain length in the anionic structure of photoacid generators resulted in lower pattern resolution due to the interruption of acid diffusion.

  • PDF

Compressive stress-strain behavior of RFAC after high temperature

  • Liang, Jiongfeng;Wang, Liuhaoxiang;Ling, Zhibin;Li, Wei;Yang, Wenrui
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • This paper discusses the effect of high temperatures (Ts) on the compressive strength and stress-strain curve of recycled fine aggregate concrete (RFAC), based on the experimental results. A total of 90 prisms (100 mm×100 mm×300 mm) were tested. The results show that the compressive strength and elastic modulus of RFAC specimens decreased significantly with increasing T values. As T increased, the strain corresponding to peak stress decreased first when T<200℃ and then increased afterwards. With increasing T values, the stress-strain curves became flat gradually, the peak stress dropped gradually, and εp decreased when T<200℃ and increased in the T range of 400-800℃. A stress-strain relations for RFAC exposed to high Ts is proposed, which agree quite well with the test results and may be used to practical applications.

Modeling and Analysis of Fine Particle Behavior in Ar Plasma (모델링을 통한 Ar 플라즈마 중의 미립자 운동에 관한 연구)

  • 임장섭;소순열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2004
  • Recently, many researches for fine particles plasma have been focused on the fabrication of the new devices and materials in micro-electronic industry, although reduction or elimination of fine particles was interested in plasma processing until now on. In order to enhance their utilization, it is necessary to control and analyze fine particle behavior. Therefore, we developed simulation model of fine particles in RF Ar plasmas. This model consists of the calculation parts of plasma structure using a two-dimensional fluid model and of fine particle behavior. The motion of fine particles was derived from the charge amount on the fine particles and forces applied to them. In this paper, Ar plasma properties using two-dimensional fluid model without fine particles were calculated at power source voltage 15[V] and pressure 0.5[Torr]. Time-averaged spatial distributions of Ar plasma were shown. The process on the formation of Coulomb crystal of fine particles was investigated and it was explained by combination of ion drag and electrostatic forces. And also analysis on the forces of fine particles was presented.

A Fine-scale Half Ring-like Structure around a Pore

  • Song, Donguk;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2013
  • We studied a fine-scale half ring-like structure around a pore seen from the high spectral and the high spatial resolution data. Our observations were carried out using the Fast Imaging Solar Spectrograph (FISS) and the InfraRed Imaging Magnetograph (IRIM) installed at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory (BBSO) on 2012 July 19. During the observations, we found a fine-scale half ring-like structure located very close to a pore (~0.4 arcsec apart from the pore). It was seen in the far wing images of the $H{\alpha}$ and Ca II $8542{\AA}$ lines, but it was not seen in the line center images of two lines. The length of the structure is about 4200 km and the width is about 350 km. We determined its line-of-sight velocity using the Doppler shift of the centroid of the Ti II line ($6559.6{\AA}$, close to the $H{\alpha}$ line) and determined horizontal velocity using the NAVE method. we also investigated the magnetic configurations using the Stokes I, Q, U, and V maps of the IRIM. As a results, we found that it has a high blue-shift velocity (~2km) faster than the photospheric features and has a strong horizontal component of the magnetic field. Based on our findings, we suggest that it is associated with small flux emergence, which occurs very close to the pore. Even though it is very small structure, this kind of magnetic configuration can be in chare of the upper chromosphere heating, especially above the pore.

  • PDF

Optimal Design and Control of xy${\theta}$ Fine Stage in Lithography System (리소그라피 장비에서 xy${\theta}$미세구동기의 최적 설계 및 제어)

  • 김동민;김기현;이성규;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.163-170
    • /
    • 2002
  • The quality of a precision product, in general, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the work piece in the process. Recently the positioning accuracy level has reached to the level of submicron and long range of motion is required. For example, for 1 GDARM lithography, 20nm accuracy and 300mm stroke needs. This paper refers to the lithography stage especially to fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM (Linear DC Motor) is used and for fine one VCM is used. In this study, we propose the new structure of VCM for the fine actuator. It is 3 axis precision positioning stage for an aligner system. After we perform the optimal design of the stage to obtain the maximum force, which is related to the acceleration of the stage to accomplish throughput of product. And we controlled this fine stage with TDC. So we obtained 50nm resolution. So later more works will be done to obtain better accuracy.