DOI QR코드

DOI QR Code

모델링을 통한 Ar 플라즈마 중의 미립자 운동에 관한 연구

Modeling and Analysis of Fine Particle Behavior in Ar Plasma

  • 임장섭 (목포해양대학교 해양전자통신공학부) ;
  • 소순열 (훗가이도대학교 공학연구과 전자정보공학전공)
  • 발행 : 2004.01.01

초록

미립자 플라즈마란 입경이 수[$\mu\textrm{m}$]이하의 거의 일정한 크기를 가진 미립자가 다수로 생성 및 유지되면서, 정 또는 부외 전하를 가지고 기체 플라즈마 중에 부유하는 상태를 말한다. 플라즈마 프로세스에서는 이러한 미립자가 집적회로에 중착되어 막의 열화, 회로 배선의 불량 및 단선 등의 약영향을 끼치는 것으로 인식되고 있으며, 이러한 부분에 대한 억제나 제어에 관한 연구가 진행되고 있다. 본 연구에서는 유체 모델을 이용한 시뮬레이션으로부터 방전 챔버내의 Ar 플라즈마의 현상을 이해하고, Ar 플리즈마 중에 미립자를 투입하여 그 움직임을 분석하여, 플라즈마 중의 미립자 운동의 핵석 결과로서는, 하부 전극 면위에 비교적 규칙성을 갖는 미립자가 배열하는 것을 확인할 수 있었다. 또한, 약 전리 플라즈마에서는 전지의 이동로가 크기 때문에 미립자의 대전량은 평균 전자 에너지에 크게 의존하는 것을 알 수 있었다.

Recently, many researches for fine particles plasma have been focused on the fabrication of the new devices and materials in micro-electronic industry, although reduction or elimination of fine particles was interested in plasma processing until now on. In order to enhance their utilization, it is necessary to control and analyze fine particle behavior. Therefore, we developed simulation model of fine particles in RF Ar plasmas. This model consists of the calculation parts of plasma structure using a two-dimensional fluid model and of fine particle behavior. The motion of fine particles was derived from the charge amount on the fine particles and forces applied to them. In this paper, Ar plasma properties using two-dimensional fluid model without fine particles were calculated at power source voltage 15[V] and pressure 0.5[Torr]. Time-averaged spatial distributions of Ar plasma were shown. The process on the formation of Coulomb crystal of fine particles was investigated and it was explained by combination of ion drag and electrostatic forces. And also analysis on the forces of fine particles was presented.

키워드

참고문헌

  1. J. Appl. Phys. v.79 simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization-sensitive laser-light-scattering method M.Shiratani;H.Kawasaki;T.Fukuzawa;T.Yoshicka;Y.Ueda;S.Singh;Y.Watanabe https://doi.org/10.1063/1.360916
  2. J. Appl. Phys. v.80 Detection of particles in rf silane plasmas using photoemission method T.Fukuzawa;K.Obata;H.Kawasaki;M.Shiratani;Y.Watanabe https://doi.org/10.1063/1.363273
  3. Appl. Phys. Lett. v.64 Novel in situ method to detect subnanometer-sized particles in plasmas and its application to particles in helium-diluted silane radio frequency plasmas T.Fukuzawa;M.Shiratani;Y.Watanabe https://doi.org/10.1063/1.111359
  4. J. Appl. Phys. v.86 MoS2 nanoparticle formation in a low pressure environment E.Stoffels;W.W.Stoffels;G.Ceccone,R.;Hasnaoui,H.;Keune;G.Wahl;F.Rossi https://doi.org/10.1063/1.371227
  5. Appl. Phys. Lett. v.66 Superhard nanocrystalline composite materials: The TiN/Si3N4 system S.Veprek;S.Reiprich;Li Shizhi https://doi.org/10.1063/1.113110
  6. Phys. Rev. Lett. v.73 Plasma Crystal: Coulomb Crystallization in a Dusty Plasma H.Thomas;G.E.Morfill;V.Demmel;J.Goree;B.Feuerbacher;D.Mohlmann https://doi.org/10.1103/PhysRevLett.73.652
  7. Phys. Rev. Lett. v.72 Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas J.H.Chu;L.I. https://doi.org/10.1103/PhysRevLett.72.4009
  8. J. Appl. Phys. v.72 Sheath structure around particles in low-pressure discharges J.E.Daugherty;R.K.Porteous;M.D.Kilgore;D.B.Graves https://doi.org/10.1063/1.352245
  9. Dusty Plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing Andre Bouchoule
  10. KIEE Intermational Trans. on EA v.2-C no.5 A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma Ho-Jun Lee;Dong-Hyun Kim;Chung-Hoo Park