• Title/Summary/Keyword: Fine powder

Search Result 1,185, Processing Time 0.027 seconds

Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling (극저온 기계화학적 밀링(Mechano-Chemical Milling)에 의해 제조된 ODS Fe 합금의 기계적 특성)

  • Hahn, Sung-In;Hong, Young-Hwan;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.

The Improvement of Properties of Recycled aggregates using Concrete Waste by Pre-heating Method. (예비가열법에 의한 폐콘크리트 재생골재의 물성개선)

  • 최현수;김효열;최봉철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.73.2-79
    • /
    • 2003
  • The purpose of this study is to provide the basic data on the optimum method for interfacial separation for an effective recycle of concrete waste by using the thermal properties of concrete. Therefore, this study is proceeded by dividing the interface of concrete into cement paste and fine aggregates or mortar and coarse aggregate, considering the aspect of recycled cement and aggregate as the recycling use of concrete waste. As results of the experiment, in case of recycle cement, the interfacial separation is easily appeared, but it is shown that the mixed amount of powder included in fine aggregate doesn't greatly decrease. But, in case of recycle coarse aggregate, the effect of interfacial separation by preliminary heating is predominant. Especially, the bonding rate of mortar is the lowest when it is heated 5 times for 120 minutes at $300^{\circ}C$. Hence, it is considered that it will be an excellent effect of quality control when the results of this study is applied to a manufacturing system of recycle coarse aggregate which is about to put into practical use.

  • PDF

Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells (고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구)

  • 최창주;김태성;황종선;김선재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

Quality Properties of Blast Furnace Slag Brick Using the Recycled Fine Aggregates Depending on Waste Oil and Curing Method (폐식용유 혼입 및 양생방법에 따른 순환잔골재 사용 고로슬래그 벽돌의 품질특성)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.61-62
    • /
    • 2011
  • This study reviewed the effect of W/B, WO and curing method on the quality properties of RA using the BS brick under the zero cement condition. compressive strength was found to show an increasing trend as W/B increased, but to show a improvement in case steam curing was conducted, showing a higher increase at 1 day age in comparison with 7 day age. In addition, the compressive strength on the mixing of WO didn't show any specific trend. The absorption tended to decrease as W/B increased and met the less than 10% regulation value at 30~35% W/B in case WO was used, there appeared a decrease attributable to capillary pore filling effect due to saponification. On the other hand, compressive strength increases, th absorption showed a gradually decreasing tendency.

  • PDF

Influence of Heat-treatment on Physical Properties of Nanocrystalline Indium Tin Oxide (ITO) Particle (나노급 인듐 주석 산화물 입자의 물성에 미치는 열처리의 영향)

  • 홍성제;한정인;정상권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.747-753
    • /
    • 2004
  • In this paper, nanocrystalline indium tin oxide (ITO) particles were fabricated by using synthesis without harmful elements. The synthetic method is to eliminate the chloridic and nitridic elements which are included in the current wet type synthetic method. Therefore, it is possible to lower synthetic temperature below 600 $^{\circ}C$ to eliminate the harmful elements. Accordingly, fine particle can be achieved by applying the process. Particle size, surface area, crystal structure, and composition ratio of the synthesized nanocrystalline ITO particle by using the method were analyzed with high resolution transmission electron microscopy (HRTEM), BET surface area analyzer, X-ray diffraction (XRD), and energy dispersion spectroscopy (EDS). As a result, its particle size is less than 10 nm, and the surface area exceeds 100 m$^2$/g. The XRD analysis indicates that the cystal structure of the powder is cubic one with orientation of <222>, <400>, <440>. Also, the analysis of the composition demonstrates that the around 8 wt% tin is uniformly included in In$_2$O$_3$ lattice of the nanoparticle.

PREPARATION AND PROPERTIES OF OIL-BASED MAGNETIC FLUIDS WITH THE SYNTHESIZED MAGNETITE

  • Jang, K.O.;Doh, S.W.;Cho, S.I.;Shon, H.J.;Hur, W.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.819-823
    • /
    • 1995
  • The oil-based magnetic fluids were sysnthesized using ultra-fine $Fe_{3}O_{4}$ powder dispersed in hydrocarbon oil. To synthesize ultra-fine $Fe_{3}O_{4}$, we carried out the experiments varying the pH of reacting medium and the initial concentration of $Fe^{2+}$. We also investigated the amount of oleic acid to obtain a stable dispersion and the proper base oil of MF for loudspeaker application. The limits of adsorbed amount of oleic acid on the $Fe_{3}O_{4}$ surface were approximately 35~40 percents of the total magnetite weight. As the $Fe_{3}O_{4}$ content increased from 0.1g/cc to 0.6g/cc, the viscosity of oil-based magnetic fluid increased from 1,063cP to 1,828cP, and its saturation magnetization at 10kOe increased from 66G to 242G. When we tested the MF sample to a commercial speaker, improvements were noted.

  • PDF

Fabrication and Mechanical Properties of ultra fine WC-6wt.%Co by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-6wt.%Co 소결체 제조 및 기계적 특성 평가)

  • Park, Hyun-Kuk;Lee, Seung-Min;Youn, Hee-Jun;Bang, Ki-Sang;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Using the spark plasma sintering process (SPS process), the WC-6wt.%Co hard materials were densified using an ultra fine WC-Co powder. The WC-Co was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and the DC pulse current for 3 min without any significant change in the grain size. The average grain size of WC that was produced through this experiment was about $0.2{\sim}0.8{\mu}m$. The hardness and fracture toughness were about $1816kg/mm^2$ and $15.1MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $1200^{\circ}C$.

Investigating the Colour Difference of Old and New Blue Japanese Glass Pigments for Artistic Use

  • Chua, Lynn;Quan, Seah Zi;Yan, Gao;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Colour consistency is an important consideration when selecting pigments used on works of art. In this study, we analyse the colour difference between two sets of synthetic blue glass pigments acquired at least 8 years apart from the same manufacturer in Japan. The old pigment set (unused, dry powder with four different grain sizes) appears faded compared to the new set. These pigments are made available for artistic use, commonly in Nihonga or Japanese paintings. Raman spectroscopy and SEM-EDS results characterize these pigments as cobalt aluminate spinels dissolved in leaded glaze, a special class of complex coloured inorganic pigments that is not well-understood in the field of conservation. Colour difference between the old and new pigments with four different grain sizes were quantified by analysing photomicrographs with image analysis software. Blue pigments with coarse and extremely fine grains showed significant colour change compared to pigments with medium and fine grain sizes. The high occurrence of crystallites in the finer grains give a final colour that is bluer and lighter. Possible causes for the colour difference including manufacturing methods and storage environment are discussed.

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.