• Title/Summary/Keyword: Fine powder

Search Result 1,184, Processing Time 0.026 seconds

The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus (액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성)

  • Kang, Yun-Chan;Ju, Seo-Hee;Koo, Hye-Young;Kang, Hee-Sang;Park, Seung-Bin
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

Fracture Properties of Carbon Coated LPS-SiCf/SiC Composites (액상소결을 이용한 탄소코팅 SiCf/SiC복합재료의 파괴특성)

  • Kim, Sung-Won;Lee, Moon-Hee;Hwang, Seung-Kuk;Lee, Sang-Pill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Mechanical properties of carbon coated $SiC_f/SiC$ composites have been investigated, in conjunction with a detailed analysis of microstructure. Especially, the fracture behavior of $SiC_f/SiC$ composites by the induction of carbon coating layers has been examined. The matrix region of $SiC_f/SiC$ composites with ultra-fine SiC powders were consolidated by a liquid phase sintering (LPS) process, using a sintering additive of $Al_2O_3-Y_2O_3$ powder compound. In this composite, plain and satin- woven Tyranno SA fabrics were also utilized as a reinforcing material. A carbon interfacial layer was coated around satin-woven SiC fabrics. The characterization of LPS-$SiC_f/SiC$ composites was investigated by means of SEM and three point bending test.

Standard test method for Photocatalytic activity with optical fiber (광섬유를 이용한 광촉매 성능 측정 표준화의 이해)

  • Joo Hyun-Ku;Ha Jin-Wook;Cho Duk-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.331-336
    • /
    • 2005
  • Recently, Japan has showed strong demand for protection of consumers against misleading specification provided by producers, establishing the committee for JIS and ISO. To protect domestic market and overcome potential subordinate relationship in overseas market, several universities and institutes in Korea have performed collaborative works on the standardization of test method f3r photocatalytic activity concerning the selected application fields. This article deals with the process and the result for the method of testing photocatalytic sol or suspended powder using optical fiber. Currently, this method is Intended for TiO2, but can be applied for various photocatalytic raw materials that can be activated by visible light and solar irradiation.

  • PDF

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process (3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구)

  • Son, Byoung-hwi;Hong, Jae-geun;Hyun, Yong-taek;Bae, Seok-choun;Kim, Seung-eon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.

Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering (급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성)

  • Woo, Kee Do;Kim, Sang Hyck;Kim, Ji Young;Park, Sang Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

Magnetic Properties and Microstructure of Nanocrystalline NdFeB Magnets Fabricated by a Modified Hot Working Process

  • Kim, Hyoung-Tae;Kim, Yoon-Bae;Jeon, Woo-Yong;Kim, Hak-Shin
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.138-142
    • /
    • 2002
  • Magnetic properties, microstructure and texture of NdFeB magnets fabricated by a modified hot working process from commercial melt-spun powders (Magnequench; MQPA, MQPB and MQPB+) have been investigated. The hot-pressed isotropic magnet made from MQPA powder, which contains higher Nd content than that of MQPB or MQPB+, shows higher coercivity. The magnet also shows homogenous and fine grains with higher coercivity for higher consolidation pressure. The hot-deformed MQPA magnet shows a strong anisotropy along the press direction with homogeneous platelet Nd$_2$Fe$_{14}$B grains of 50∼100nm in thickness and 200∼500nm in length. The hot-deformed MQPB+ magnet, however, shows low remanence and low coercivity. The microstructure of the magnet consists of two areas; undeformed Nd$_2$Fe$_{14}$B grains and well-aligned but large grains with 3∼4 $\mu$m in length. Low Nd content attributes to the formation of the two different area.

The Electromagnetic Wave Absorption Characteristics of Cu-Ni-Zn Ferrite by Thermal Decomposition of Organic Acid Salt (유기산염 열분해법에 의한 Cu-Ni-Zn 페라이트의 전자파 흡수 특성)

  • 정재우;이완재
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.947-951
    • /
    • 1995
  • The electromagnetic interference is prevented by the high magnetic loss of the ferrite. The absorbing property of electromagnetic wave could be improved by the ferrite that has a finer and more uniform microstructure. The thermal decomposition of organic acid salt provided the uniform composition and fine powder. The absorbing properties of electromagnetic wave were evaluated by the relative complex permeability, permittivity, and the attenuation which is calculated from the results of network analyzer. The permeability and permittivity were increased with increase of the density and with decrease of the grain size. The matching thickness could be reduced with increasing sintered temperature. The attenuation of the Cu-Ni-Zn ferrite showed over 20dB when the matching thickness and the matching frequency range were 6.75mm and from 160MHz to 640MHz, respectively.

  • PDF

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.

Synthesis and Characterization of the Layered Type $(C_nH_{2n+1}NH_3)_2PbCl_4$ System

  • Lee, Su Jong;Kim, Gye Ya;O, Eun Ju;Kim, Gyu Hong;Yeo, Cheol Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.317-320
    • /
    • 2000
  • Layered $K_2NiF_4$type ($C_nH_{2n+1}NH_3)_2PbCl_4$(n=6, 8 and 10) system, or alkylammonium tetrachloroplumbate compound, has been synthesized from $PbCl_2$ and $C_nH_{2n+1}NH_3Cl$ solutions under argon ambient pressure for 12hrs at $90^{\circ}C$. The crystal structure of the compound has been analyzed using X-ray powder diffaction in the range of $5^{\circ}{\leq}2{\theta}{\leq}55^{\circ}$, and all samples assigned to an orthorhombic system. Local distances of the Pb-Cl bond have been determined by Pb $L_{III}$-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The vibration modes of alkylammonium chains and the absorpton peaks of an excition have been examined by FT-IR and UV-Vis. reflectance spectra, respectively. The phase transition temperatures of the compounds have been studied by using DSC. According to the thermal analysis, two phase transition temperatures have been observed in the compositons of n=8 and 10.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.