• Title/Summary/Keyword: Fine particle migration

Search Result 14, Processing Time 0.036 seconds

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration (미세 Diatom 입자 이동에 의한 모래지반의 투수 특성 변화)

  • Pyo, Won-Mi;Lee, Jong-Sub;Lee, Joo Yong;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • During the process of gas hydrate extraction in the deep seabed, fine diatom particle migration occurs, which causes the seabed slope failure and the productivity deterioration of the gas hydrate. Therefore, a study related with the changes of the ground characteristics due to the fine particle migration is required. The objective of this study is to investigate the change of hydraulic properties of sand due to the migration of fine diatom particle in sandy soils. In order to simulate the sediments of the Ulleung basin gas hydrate in the East Sea, fifteen sand-diatom mixtures that have different diatom volume fractions (DVF) are prepared. During the falling head permeability tests, the coefficients of permeability are measured according to the DVF. In addition, for the simulation of the fine diatom particle migration, constant head permeability tests are conducted by applying the hydraulic pressures of 3 kPa, 6kPa, and 9 kPa on a specimen composed of two layers: a specimen with 50% DVF in upper layer and a specimen with 0% DVF in lower layer. Furthermore, the coefficient of permeability and the electrical resistivity of the migration zone are measured during the constant head permeability test. The falling head permeability tests show that the coefficient of permeability decreases as the DVF of the specimen increases. In addition, the gradient of the coefficient of permeability curve decreases in the DVF range of 10%~50% compared with that of 0%~10%, and increases above 50% in DVF. The result of constant head permeability tests shows that the coefficient of permeability decreases and electrical resistivity increases in the migration zone due to the fine diatom particle migration. This study demonstrates that fine diatom particle migration reduces the permeability of the soils and the behavior of the migration zone due to the fine diatom particle migration may be estimated based on the reversal relationship between the coefficient of permeability and the electrical resistivity.

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

Study of Kaolin Particle Migration and Clogging Using a Micromodel (마이크로 모델을 이용한 고령토 입자의 유동 특성 연구)

  • Ha, Minkyu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.37-42
    • /
    • 2019
  • Hydrate dissociation is required to produce methane, which generates both water and methane. Thus, multiphase fluid flow and desalination are expected during methane production, which causes the fine migration and clogging in pores. The goal of this study is to explore the effects of both multiphase fluid flow and desalination on the migration and clogging of kaolin particles as typical fines. The results are as follows : (1) the larger the pore size is, the more mounting the critical clogging concentration is, (2) kaolin particles are more easily clustering and clogging in deionized water than salty water, and (3) the critical clogging concentration of kaolin in multiphase fluid flow is lower than in singlephase fluid flow. Therefore, clustering and clogging of kaolin within pore occur easily due to desalination and multiphase fluid flow when methane is produced from hydrates, and the efficiency of methane production is expected to decrease due to the degradation of permeability coefficient.

Comparison & Analysis for Fine Sand Migration in Filter (조립 Filter내에서 세상의 이동현상에 대한 비교분석)

  • Kim, Hyun-Ki;Kwon, Moo-Nam
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.15-23
    • /
    • 1998
  • This experiment did comparison and analysis that protected soil particle migration have affect on function of the filter and therefore fall function of the filter. Results obtained are as follows: 1.High water head makes to be much movement of fine sand and out flow of particle to the outside. The filter have large opening size that reached stability an early stage, but much fine sand is washed away. If the velocity turns fast and becomes small, blocking phenomenon is remarkable nearby the filter-sand interface. 2. The movement of fine sand that effect on function of filter depend on opening size and change of water head. Under the same condition, USCE filter and USSPL filter is reached earlier than other filter that is stability of stage, because it's opening size is large. 3. Residual quantity of fine sand migration was largly come out in order of USSPL, USCE, USBR, Newton & Hurley, Bertram filter. 4. The time required to stability of flow was taken less in order of Bertram, Newton & Hurley, USBR, USSPL, USCE filter and coefficient of permeability was highly come out in order of USBR, Bertram, Newton & Hurley, USSPL, USCE filter. 5. It proved that USCE and USSPL is suitable for the filter criteria.

  • PDF

Distribution of Persistent Organic Pollutants (POPs) in Different Sizes of Particles in the Ambient Air of the Pyeongteak Area (평택지역 대기 중 먼지 입경별 잔류성유기오염물질 분포특성 연구)

  • Kim, Dong-Gi;Woo, Jung-Sik;Kim, Yong-Jun;Jung, Hye-Eun;Park, Ju-Eun;Cho, Duck-Hee;Moon, Hee-Chun;Oh, Jo-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.192-203
    • /
    • 2020
  • Objectives: The concentration distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenlys (dl-PCBs), and polycyclic aromatic hydrocarbons (PAHs) in fine particles were investigated to provide basic data on POP behavior and composition analysis. Methods: The concentrations of PCDD/Fs, dl-PCBs, and PAHs by particle size were evaluated for TSP, PM10, and PM2.5. Also, fine dust component analysis and factor analysis were performed to identify the source of PCDD/Fs. Results: The particle size distribution was found to account for 24.3% of >10 ㎛, 14.5% of 2.5-10 ㎛, and 61.2% of <2.5 ㎛. The average contributions of coarse particles (>2.5 ㎛) and fine particles (<2.5 ㎛) were PCDD/Fs 67%, dl-PCBs 66%, benzo (a) pyrene 83% and PAHs 84%, and the contributions of fine particles (<2.5 ㎛) were higher than coarse particles (>2.5 ㎛). However, the contributions of coarse particles increased in April to September with higher temperatures, while those of fine particles increased in February to March with lower temperatures. Conclusions: Low chlorinated (4Cl-5Cl) PCDD/Fs were more adsorbed compared to coarse particles due to the influence of pollutant migration from particulate to gas phase according to temperature rise, whereas high chlorinated (6Cl-8Cl) PCDD/Fs were more adsorbed compared to fine particles. PCDD/Fs sources were assessed to be major sources of emissions, such as incineration facilities and/or open burning.

Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels (실내실험에 의한 혼합사 식생하도의 지형변화와 하상토 분급 특성 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2016
  • This study investigates the development of lower channels and sediment sorting processes in the vegetated channels with the mixed sediment. The sediment discharges fluctuate with time and decrease with vegetation density. The bed changes with irregular patterns, and the sediment particles in the vegetated zone at the surface of bed are fine. The dimensionless geometric mean decreases with vegetation density. The fine sediment particles are trapped by vegetation, and the bed between main steam and vegetated zone increases. Moreover, the particle sizes are distributed irregularly near the zone. The hiding functions decrease with dimensionless particle size. However, the functions increase with vegetation density, which is confirmed by decreasing sediment discharge with vegetation. The lower channel is stable and the migration decreases in the condition of $0.5tems/cm^2$. However, the migration of the lower channel in the condition of $0.7stems/cm^2$ increases due to the increased sinuosity and new generated channels in the sedimentated vegetation zone.

Effect of sludge concentration on sludge dewaterability and cake clogging analysis (슬러지의 탈수성(脫水性)에 대한 농도(濃度)의 영향(影響)과 케이크 폐색현상(閉塞現象)의 해석(解析))

  • Kwon, Jae Hyun;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.85-95
    • /
    • 1996
  • Although the specific resistance to filtration is the most frequently employed means for characterizing dewaterability of a sludge, it presently is not possible to design nor to prediet performance of dewatering facilities using traditional linearized parabolic filtration equation, that is, the specific resistance model because of theoretical and practical inadequacies of the concept. Limitations of the specific resistance model reflect the need to examine fundamental sludge properties and filtration behaviors affecting dewaterability. From this study, two major limitations of the specific resistance model were noted. First, specific resistance values are very dependent on the sludge concentration because of the variations of particle size distribution and cake clogging to occur when surface area mean diameter is less than $25{\mu}m$ for activated sludge, $18{\mu}m$ for water treatment plant sludge. Second, nonparabolic filtration behavior can result from cake clogging, caused by the migration of fine particles into the cake pores, accelated by skin effect with highly compressible sludges.

  • PDF

Chemical Composition Characteristics of Size-fractionated Particles during Heavy Asian Dust Event in Spring, 2010 (2010년 봄철 고농도 황사의 입경별 화학조성 특성)

  • Lee, Dong-Eun;Kim, Won-Hyung;Ko, Hee-Jung;Oh, Yong-Soo;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.325-337
    • /
    • 2013
  • The size-fractionated aerosol samples have been collected at Gosan Site of Jeju Island during the spring season of 2010, in order to examine the chemical composition characteristics of the Asian Dust and Non-Asian Dust particles. The concentrations of ${HCO_3}^-$, Al, and nss-$Ca^{2+}$ in $PM_{10}$ had tremendously increased during the heavy Asian Dust (March 20, 2010). The concentration ratios of Asian Dust to Non-Asian Dust for the soil species (nss-$Ca^{2+}$, ${HCO_3}^-$, Al, Fe, Ti, Mn) were 12.2~30.7, meanwhile those for the anthropogenic species (nss-${SO_4}^{2-}$, ${NH_4}^+$, ${NO_3}^-$, $K^+$, Zn, Pb, and Cu) were 2.9~7.8. During the heavy Asian Dust event, the concentration increase of ${NO_3}^-$ in $PM_{2.5}$ were much more apparent than those of nss-${SO_4}^{2-}$ and ${NH_4}^+$, and the soil species (nss-$Ca^{2+}$ and ${HCO_3}^-$) showed much higher concentration increase. The neutralization factor of $NH_3$ was higher than that of $CaCO_3$. However, the neutralization factor of $CaCO_3$ in $PM_{10}$ was exceptionally high during the heavy Asian Dust, showing the evidence of heavy migration of soil particles. From the study for size fractionated particles, it was found that nss-${SO_4}^{2-}$ and ${NH_4}^+$ were mostly distributed in fine particle mode, on the other hand, ${NO_3}^-$ existed evenly in both fine and coarse particle modes, and the soil species (nss-$Ca^{2+}$, Al, Fe, etc.) were mainly in the latter mode. During the heavy Asian Dust, in particular, the concentrations of ${NH_4}^+$, nss-${SO_4}^{2-}$, $K^+$, Zn, and Pb had increased in coarse particle mode as well.

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.588-595
    • /
    • 2009
  • The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.